

University of Hyderabad, Entrance Examination, 2012

Ph.D. (Statistics-OR)

Hall Ticket No.

Answer Part A by **circling** the correct letter in the array below:

Time- 2 Hours

Max. Marks: 75 Part A:25 Part B:50

Instructions

1. calculators are not allowed.

- 2. Part A carries 25 marks. Each correct answer carries 1 mark and each wrong answer carries -0.33 mark. If you want to change any answer, cross out the old one and circle the new one. Over written answers will be ignored.
- 3. Part B carries 50 marks. instructions for answering Part B are given at the beginning of Part B.
- 4. Use a separate booklet for Part B.

	1	a	b	С	d	
L	2	a	b	С	d	
	3	a	b	С	d	
	4	a	b	С	d	
	5	a	b	с	d	

6	a	b	С	d
7	a	b	С	d
8	a	b	С	d
9 .	a	b	С	d
10	a	b	с	d

11	a	b	с	d
12	a	b	С	d
13	a	b	с	d
14	a	b	С	d
15	a	b	С	d

16	a	b	C.	d
17	a	b	с	d
18	a	b	с	d
19	a	b	с	d
20	a	b	С	d

21	a	b	С	d
22	a	b	с	d
23	a	b	с	d
24	a	b	С	d
25	a	b	с	d

A-57

Part-A

- Find the correct answer and mark it on the OMR sheet. Each correct answer gets 1 (one) mark and wrong answer gets -0.33 marks..
- 1. Two squares are chosen at random on a chess board. What is the probability that they have one common side?
 - (a) $\frac{1}{18}$ (b) $\frac{32}{2016}$ (c) $\frac{49}{64}$ (d) $\frac{1}{36}$
- 2. Let X_1, X_2X_3, X_4 be independent random variables. X_2, X_3, X_4 have Poisson distribution with mean 5, further $Y = \sum_{i=1}^{4} X_i \sim \text{Poisson}(25)$. The distribution of X_1 is
 - (a) Binomial (b) Exponential (c) Rectangular (d) Poisson
- 3. Let X_1, X_2 be *i.i.d.* random variables with pdf f(x), define $Y_1 = \min\{X_1, X_2\}$ and $Y_2 = \max\{X_1, X_2\}$, the joint pdf of Y_1 and Y_2 is

(a)
$$f(y_1)f(y_2)$$
 (b) $f^2(y_1)f(y_2)$ (c) $2f(y_1)f(y_2)$ (d) $f(y_1)f^2(y_2)$

4. For two events A and B, P(A|B) = 1, so

(a)
$$P(B^c|A^c) = 0$$
 (b) $P(B^c|A^c) = 1$ (c) $P(B^c|A^c) = \frac{1}{2}$ (d) $P(B^c|A^c) = \frac{3}{4}$

- 5. Let x_1 and x_2 be two independent observations of a Bernoulli random variable that takes values 1 or 0 with probabilities θ and $(1 - \theta)$ respectively. If $\theta \in [\frac{1}{3}, \frac{2}{3}]$, the maximum likelihood estimate of θ is ?
 - (a) $\frac{x_1 + x_2}{2}$ (b) $\frac{2 + x_1 + x_2}{6}$ (c) $\frac{x_1 + 2x_2}{6}$ (d) $\frac{3 + 2x_1 + 2x_2}{6}$
- 6. X_1, X_2, X_3 is a random sample from the N(0, 1), define $Y_1 = X_1 + X_2 + X_3$, then $V(Y_1|X_2)$ is
 - (a) 6 (b) 3 (c) 2 (d) 1

- 7. Five numbers are drawn from the set $\{1, 2, ..., 100\}$ by SRSWOR, the probability p that their median is at least 20 is
 - (a) less than 0.25 (b) $0.25 \le p < 0.5$ (c) $0.5 \le p < 0.8$ (d) $0.8 \le p < 0.99$
- 8. $X \sim U(0, 1)$ and $Y \sim B(10, X)$, then V(Y) is
 - (a) 5 (b) 6 (c) 10 (d) 12
- 9. If for a random variable X, E(X) = 1 and $E(X^2) = 3$, then

(a)
$$P(-3 \le X \le 3) < 0.5$$
 (b) $P(-3 \le X \le 3) > 0.75$

(c)
$$P(-3 \le X \le 3) = 0.6$$
 (d) $P(-3 \le X \le 3) = 0.5$

- 10. $\lim_{n \to \infty} \left(1 \frac{a_n}{n} \right)^2$ where $a_n = \left(1 + \frac{1}{n} \right)^n$ is equal to (a) 1 (b) e^e (c) e^{-e} (d) $e^{e^{-1}}$
- 11. Based on a random sample of size 16 from the $N(\mu, \sigma^2)$ population. The 95% confidence interval for μ was [39, 52]. It means
 - (a) the mean of this random variable is certainly in the interval [39, 52]
 - (b) one is 95% sure that the mean is in the interval [39, 52]
 - (c) the mean is greater than 52 with probability 0.025
 - (d) none of the above
- 12. In a simple regression of Y on X, what is the correlation coefficient between Y and \hat{Y} the predicted value of Y if the correlation between X and Y is $\frac{1}{2}$.
 - (a) 0 (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) 1
- 13. X_1, \ldots, X_n is a random sample from the $U(a \theta, b + \theta)$, $a < b, \theta \ge 0$. Let $X_{(1)} = \min(X_1, \ldots, X_n)$, $X_{(n)} = \max(X_1, \ldots, X_n)$ and $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$, the joint sufficient statistic for (a, θ, b) is
 - (a) $(-X_{(1)}, X_{(n)})$ (b) $(X_{(1)}, \overline{X}, X_{(n)})$ (c) $(X_{(1)} + X_{(n)})$ (d) (X_1, \ldots, X_n)

- 14. X_1 and X_2 are *i.i.d.* N(0,1) random variables, then $X_1 + X_2$ and $X_1 X_2$
 - (a) have different expected values (b) are uncorrelated but not independent
 - (c) are independent (d) have different variances
- 15. If the characteristic function of *i.i.d.* random variables X_1 and X_2 is $\phi(t)$ where $\phi : \mathbb{R} \to \mathbb{R}$, then the characteristic function of $X_1 X_2$ is
 - (a) $\phi(t)$ (b) $\phi^2(t)$ (c) $-\phi(t)$ (d) $\phi(\frac{1}{t})$
- 16. X₁,..., X_n is a random sample from the N(μ, σ²) population. If T₁ = X₁+..., +X_n and T₂ = X₁²+..., +X_n² then which of the following statements is correct regarding sufficient statistics for μ and σ²
 - (a) T_1 is sufficient statistic for μ
 - (b) T_2 is sufficient statistic for σ^2
 - (c) $T_2 T_1$ is sufficient for (μ, σ^2)
 - (d) (T_1, T_2) is sufficient for (μ, σ^2)

17. A is an interval (2,5] and B is an interval [3,7], then $A \triangle B$ is

- (a) a closed interval
- (b) an open interval
- (c) an open set that is not an interval
- (d) a finite set

18. The one step transition probability matrix of a homogeneous Markov chain

 $\{X_n, n \ge 0\} \text{ is}$ $\begin{bmatrix} 1/3 & 1/6 & 1/6 & 1/3 \\ 1/4 & 1/4 & 1/4 & 1/4 \\ 1/5 & 1/4 & 1/4 & 3/10 \\ 1/6 & /1/6 & 1/3 & 1/3 \end{bmatrix}$

Then which of the following is not correct?

(a) $P(X_7 = 1|X_5 = 2) = P(X_{11} = 1|X_9 = 2)$ (b) this Markov chain is irreducible (c) the states 1 and 2 are the only recurrent states (d) it is a recurrent Markov chain

- 19. Each of the seven treatments have to appear in blocks of sizes four each. Which of the following choices on "number of blocks" and "number of blocks in which a pair of treatment appear" respectively, gives a valid BIBD.
 - (a) 6,3 (b) 7,2 (c) 8,3 (d) 7,1

20. In a factorial design, it is decided to confound the effect ABCD. Blocks 1 and 2 in a replication contain the following combinations or treatments Block 1: a b c abc d abd Block 2: ab ac bc bd cd abcd What are the other treatments in blocks 1 and 2 respectively?
(a) {(1), acd} and {bcd, ad}
(b) {(1), bcd} and {acd, ad}
(c) {(1), ad} and {acd, bcd} and {(1), ad}

- 21. {X_n} is a sequence of independent random variables with pmf P(X_n = -n) = P(X_n = n) = 1/(n²+1), P(X_n = 0) = 1 2/(n²+1). Let S_n = X₁ + ... + X_n. Then
 (a) P(|S_n/n| > ε for infinitely many n) = 0
 (b) P(|S_n/n| > ε for infinitely many n) = 1
 - (c) $E(S_n/n) \rightarrow 0$
 - (d) $\lim_{n \to \infty} P(|S_n/n| > \epsilon) = 1/2$

- A-57
- 22. The dispersion matrix of a random vector $(X_1, X_2, X_3)'$ is $\begin{bmatrix} 10 & 5 & 5 \\ 5 & 9 & a \\ 5 & a & 16 \end{bmatrix}$. The value of a, so that $X_1 + X_2 + X_3$ and $X_1 2X_2 + X_3$ are uncorrelated, is
 - (a) 8 (b) 21 (c) 13 (d) 16
- 23. In a complete randomized design, for three treatments whose effects are $\alpha_1, \alpha_2, \alpha_3$, which of the following is testable?
 - (a) $\alpha_1 = 2$ (b) $\alpha_1 + \alpha_2 - \alpha_3 = 0$ (c) $\frac{\alpha_1 + \alpha_2}{2} = \alpha_3$ (d) $\alpha_1 + \alpha_2 + \alpha_3 = 0$
- 24. Shoppers arrive at a mall in accordance with a homogeneous Poisson Process, if the expected number of arrivals in an hour is 600, the expected time between consecutive arrivals is
 - (a) 1 min
 - (b) 10 second
 - (c) 6 second
 - (d) different between different consecutive pairs of arrivals
- 25. $X_n \sim U(-\frac{1}{n}, \frac{1}{n}), \ n = 1, 2, \dots$ then
 - (a) $V(X_n) \not\rightarrow 0$
 - (b) $X_n \not\rightarrow 0$ in probability but $X_n \rightarrow 0$ weakly
 - (c) $X_n \neq 0$ weakly
 - (d) $X_n \to 0$ in probability

Part-B

- Answer as much as you can, the maximum marks that you can score is 50.
- 1. a) 7 girls and 8 boys are randomly arranged in a row. Determine the probability of the event that no two girls are sitting together.

b) Two numbers are drawn from the set $\{1, 2, ..., 100\}$ by SRSWOR, determine the probability that the largest of the two is a prime number. (5+5)

- 2. X_1 and X_2 are *i.i.d.* $\exp(\lambda)$ random variables. Determine $E(X_1|X_1 + X_2 = 10)$ and $V(X_1|X_1 + X_2 = 10).$ (5+5)
- 3. 2.8, 3.2, 4.1, 2.2, 1.8, 2.7 are six independent observations of a random variable X with pdf

$$f(X,\mu,\lambda) = \frac{1}{\lambda}e^{(-\frac{x-\mu}{\lambda})}, \ x \ge \mu$$

where $\lambda \ge 0$ and $-\infty < \mu < \infty$. Assume $\mu = 1$ and construct a 90% confidence interval for λ based on the given sample. 5

4. Let X_1, \ldots, X_n be *i.i.d.* with pdf

$$f(x; \theta) = \theta x^{\theta - 1}, \ 0 < x < 1, \ \theta > 0$$

- a) Find the MLE of θ .
- b) Find the asymptotic distribution of the MLE. (5+5)
- 5. In a bag there are N slips numbered 1, 2, ..., N, N not known. Draw a SRSWR of size n. Let X₁,..., X_n denote the numbers drawn, obtain the most powerful level α test for H₀: N = N₀ vs. (i)H₁: N > N₀, (ii)H₁: N ≠ N₀
 5

- 6. A school is preparing a trip for 400 students. the company who is providing the transportation has 10 buses of 50 seats each and 8 buses of 40 seats, but only 9 drivers available. The rental cost for a large bus is *Rs*. 8000 and *Rs*. 6000 for small bus. Calculate how many buses of each type should be used for the trip for at least possible cost.
- 7. Find the optimal solution of the dual of the following LPP(P1) and hence the solution to this P1.
 - P1: maximize $x_1 + x_2 + 2x_3$

Subject to
$$x_1 + 2x_2 \le 3$$
, $2x_1 + x_2 + 2x_3 \le 1$ and all $x_i \ge 0$. 10

8. X_1, \ldots are independent random variables with the following probability distribution:

$$P(X_j = j) = P(X_j = -j) = \frac{1}{j+1}, P(X_j = 0) = 1 - \frac{2}{j+1}, j = 1, 2, \dots$$

a) Can you say that i) $X_n \to 0$ in probability?

ii) $X_n \to 0$ with probability 1?

Explain or prove as the case may be.

b) What can you say about the limiting distribution (as
$$n \to \infty$$
), of $T_n = \frac{1}{n\sqrt{2}} \sum_{j=1}^n X_j \sqrt{1 + \frac{1}{j}}$? (5+5)