

Entrance Examination : Ph. D Mathematics, 2012

Hall Ticket Number

Time : 2 hours Max. Marks. 100

 \dot{o}

Part A : 25 marks Part B : 50 marks

A - 56

1

Instructions

- 1. calculators are not allowed.
- 2. Part A carries 25 marks. Each correct answer carries 1 mark and each wrong answer carries -0.33 mark. If you want to change any answer, cross out the old one and circle the new one. Over written answers will be ignored.
- 3. Part B carries 50 marks. Instructions for answering Part B are given at the beginning of Part B.
- 4. Do not detach any pages from this answer book.
- 5. \mathbb{R} always denotes the set of real numbers, \mathbb{Z} the set of integers, \mathbb{N} the set of natural numbers and \mathbb{Q} the set of rational numbers.

Part-A

Answer Part A by circling the correct answer. Each correct answer carries 1 mark and each wrong answer carries -0.33 mark.

- 1. Let A and B be two $n \times n$ matrices such that $A \neq B$, $A^3 = B^3$ and $A^2B = B^2A$. Then the value of det $(A^2 + B^2)$ is
 - (a) 0. (b) 1. (c) 2. (d) 3/2.

2. The least upper bound of the set $\left\{ \frac{(n+1)^2}{2^n} : n \in \mathbb{N} \right\}$ is

(a) 7/4. (b) 2. (c) 9/4. (d) 5/2.

3. The radius of convergence of the power series $\sum_{n=1}^{\infty} n^{-\sqrt{n}} x^n$ is

- (a) 1. (b) 1/2. (c) 2. (d) ∞ .
- 4. The limit of $(1+x)^{\cot x}$ as $x \to 0$

Ó

(a) exists and its value is 0.

(c) exists and its value is exp(1)

5. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f(f(x)) = -x for all $x \in \mathbb{R}$. Then

- (a) f is an injective map. (b) f is strictly increasing.
- (c) f is strictly decreasing. (d) f is continuous.
- 6. The function f defined on \mathbb{R} by $f(x) = \begin{cases} 4x & \text{if } x \le 0, \\ ax^2 + bx + c & \text{if } 0 < x < 1, \\ 3 2x & \text{if } x \ge 1. \end{cases}$ is differen-

(b) exists and its value is 1.

(d) does not exist.

(a) a = b = -3 and c = 0. (b) a = -3, b = 4 and c = 0. (c) a = 4, b = -3 and c = 0. (d) a = b = 4 and c = 0.

7. The sequence (a_n) of reals, where $0 < a_n < 1$ and $a_n(1 - a_{n+1}) > 1/4$ for all $n = 1, 2, \ldots$, converges to .

(a) 0. (b) 1/2. (c) 1. (d) 2.

- 8. The series $\sum_{n=1}^{\infty} \frac{2n}{3 \cdot 5 \cdot 7 \cdots (2n+1)}$ converges to
 - (a) 1/4. (b) 1/2. (c) 3/4. (d) 1.
- 9. In which one of these topologies on the real line is it true that the closure of the set \mathbb{Q} of rationals is a countable set properly containing \mathbb{Q}
 - (a) usual topology generated by $\{(a, b) : a < b \text{ in } \mathbb{R}\}$.
 - (b) lower limit topology generated by $\{[a, b) : a < b \text{ in } \mathbb{R}\}$.
 - (c) Discrete topology = Power set of \mathbb{R} .
 - (d) Point mass topology= $\{A \subseteq \mathbb{R} | \sqrt{2} \notin A \text{ or } A \text{ is } \mathbb{R}\}.$

10. If X is a compact metric space, which ones of these follow necessarily?

- (a) X is connected.
- (b) X has a countable base for its topology.
- (c) X is uncountable.
- (d) X is not discrete.

11. Among the four subsets of \mathbb{R}^2 given below, only one is connected. Which one is it?

- (a) $\{(x, y) \in \mathbb{R}^2 | \text{ both } x \text{ and } y \text{ are rational} \}.$
- (b) $\{(x,y) \in \mathbb{R}^2 | \text{ either } x \text{ or } y \text{ are rational}\}.$
- (c) $\{(x,y) \in \mathbb{R}^2 | x \text{ is rational and } y \text{ is not} \}$.
- (d) $\{(x, y) \in \mathbb{R}^2 | \text{ neither } x \text{ nor } y \text{ is rational} \}.$
- 12. Which of these four statements is true?
 - (a) open interval (-1, 1) and \mathbb{R} are homeomorphic.
 - (b) \mathbb{Q} and \mathbb{Q}^C are homeomorphic.
 - (c) \mathbb{Q} and \mathbb{Z} are homeomorphic.
 - (d) \mathbb{R} and $\mathbb{R} \setminus \{1\}$ are homeomorphic.

13. Let G be a non abelian group. The order of G could be

÷

	(a) 35.	(b) 37.	(c) 40.	(d) 49.			
14. The number of idempotent elements in $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_4$							
	(a) 2.	(b) 4.	(c) 6.	(d) 8.			
15. The set $\{x \in \mathbb{R} : x+1 = x +1\}$ is same as							
	(a) $\{x \in \mathbb{R} : x\}$	$x \ge 0\}.$	(b) $\{x \in \mathbb{R} : x > 0\}$ (d) none of these.				
	(c) whole \mathbb{R} .						
16. The critical point (0,0) of the system $\frac{dx}{dt} = (y+1)^2 - \cos(x), \frac{dy}{dt} = \sin(x+y)$ is							
	(a) a saddle p	ooint.	(b) an unstable node.				
	(c) a stable s	piral.	(d) none of the above.				
17. The number of Jordan canonical forms for 6×6 matrix with minimal polynomial $(x-1)^2(x-2)$ is							
	(a) 1.	(b) 2.	(c) 3.	(d) none of these.			
18. The solution of the Laplace equation in spherical polar coordinates (r, θ, ϕ) is							
	(a) $\log(r)$.	(b) <i>r</i> .	(c) $1/r$.	(d) r and $1/r$.			
19. The equation $u_{xx} + x^2 u_{yy} = 0$ is							
	(a) elliptic in l	\mathbb{R}^2 .	(b) elliptic every	where except on $x = 0$ as	xis.		
	(c) hyperbolic in \mathbb{R}^2 .		(d)hyperbolic every where except on $x = 0$ axis.				
20. Let G be a group of order 10. Then							
	(a) G is an abo	elian group.	(b) <i>G</i>	is a cyclic group.			
	(c) there is a normal proper subg		roup. (d) none of these.				

4

A-56

21. The function $f(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & \text{if} \\ 0 & \text{if} \end{cases} (x,y) \neq (0,0),$ is

(a) continuous at (0,0) but partial derivatives do not exist at (0,0).

- (b) continuous at (0,0) and partial derivatives exist at (0,0).
- (c) discontinuous at (0,0) but partial derivatives do not exist at (0,0).
- (d) none of the above.
- 22. The number of zero-divisors in the ring \mathbb{Z}_{24} is
 - (a) 20. (b) 15. (c) 12. (d) none of these.

23. The image of the unit circle under the map $f(z) = 1 + z^2$ is

- (a) again the same unit circle.
- (b) another circle with a different center but the same radius.
- (c) not a circle.
- (d) none of the above.

24. Let $A \in M_3(\mathbb{R})$, $A \neq 2I$ and A satisfies the polynomial equation $x^3 - 8 = 0$. Then

(a) minimal polynomial for A is $x^2 + 2x + 4$. (b) A can be diagonizable.

(d) none of these.

A-56

(c) A is **not** diagonizable.

25. The ordinary differential equation $x^2(1-x)^2y'' + xy' + (1-x)^2y = 0$ has

- (a) both x = 0 and x = 1 as regular singular points.
- (b) both x = 0 and x = 1 as irregular singular points.
- (c) both x = 0 as an ordinary point and x = 1 as irregular singular point.
- (d) none of the above

Part B

• Attempt any 10 questions.

2. Suppose $f: [0, \infty) \to \mathbb{R}$ is a continuous function and f(0) = 0. Let f be differentiable for x > 0 and let f' be monotonically increasing. Define $g: (0, \infty) \to \mathbb{R}$ as $g(x) = \frac{f(x)}{x}$. Show that g is monotonically increasing.

3. Let f be an entire function and suppose that there exists constants M > 0, R > 0and $n \in \mathbb{N}$ such that $|f(z)| < M|z|^n$ for |z| > R. Show that f is a polynomial of degree less than or equal to n.

4. Show that an entire function has a pole at ∞ of order m if and only if it is a polynomial of degree m.

A-56

5. Consider \mathbb{R}^3 with maximum norm, i.e., $||(x, y, x)|| = \max\{|x|, |y|, |z|\}$. Define $T: (\mathbb{R}^3, || \quad ||_{\infty}) \to (\mathbb{R}^3, || \quad ||_{\infty})$ as T(x, y, z) = (-x + 2y - 3z, 4x - 5y + 6z, -7x + 8y - 9z). Find the norm of the operator T.

6. Let (H, < >) be a Hilbert space and (x_n) be a sequence in H. Let $x \in H$ such that $< x_n, y > \rightarrow < x, y >$ for all $y \in H$ and $||x_n|| \rightarrow ||x||$. Show that $x_n \rightarrow x$.

7. Let (f_n) be a sequence in $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, $f \in L^1(\mathbb{R})$ and $g \in L^2(\mathbb{R})$. If $f_n \xrightarrow{L^1(\mathbb{R})} f$ and $f_n \xrightarrow{L^2(\mathbb{R})} g$ then show that f = g almost every where.

8. Define a sequence of functions as $f_n(x) = \begin{cases} \exp\left(\frac{1}{n^2x^2-1}\right), & |x| < \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$. Show that $f_n \to 0$ uniformly on $\mathbb{R} \setminus (-1/2, 1/2)$, but f_n does not converge uniformly on \mathbb{R} .

9. Determine the Green's function for the boundary value problem xy'' + y' + f(x) = 0, y(1) = 0 and $\lim_{x\to 0} |y(x)| < \infty$.

10. Determine the stability of the critical point (0,0) for the system $\frac{dx}{dt} = -y - x \sin^2 x$, $\frac{dy}{dt} = x - y \sin^2 x$.

10

11. Let U be a vector space of polynomials of degree less than or equal to three with ordered bases $\{1, x, x^2, x^3\}$ and let V be the vector subspace of the vector space of polynomials of degree less than or equal to 4 with ordered bases $\{x, x^2 + 2x^3 - x^4, x^3 + x^4, 3x^2 + x^3 + 2x^4\}$. Let T be a linear transformation from U to V defined as $Tf = \int_0^x f(t)dt$. Find the matrix of linear transformation T.

12. Let J be a functional of the form $J[y] = \int_{x_0}^{x_1} g(x^2 + y^2) \sqrt{1 + (y')^2} dx$ where g is some function of $x^2 + y^2$. Use the polar coordinate transformation to find the general form of the extremals in terms of g, r and ϕ .

13. Solve
$$\phi'' + \int_0^x \exp(2x - 2t)\phi'(t)dt = \exp(2x), \ \phi(0) = 0 \text{ and } \phi'(0) = 1$$

14. Find the inverse Laplace transform of $\frac{1}{s(s+1)}$ using complex inversion formula.

A-56

15. Let f: pq - z = 0 and g: pq - xy = 0. Show that z = xy is a common solution. Are f and g compatible? Justify.

	u(x,0)=1,	0 < x < 1,
16. Solve $u_{tt} = u_{xx} + 1$, $0 < x < 1$, $t > 0$ subject to $\begin{cases} \\ \\ \\ \\ \end{cases}$	$u_t(x,0)=1,$	0 < x < 1,
	u(0,t) = u(1,t) = 0,	t > 0.

17. Show that $Q_1 = q_1$, $Q_2 = p_2$, $P_1 = p_1 - 2p_2$ and $P_2 = -2q_1 - q_2$ is a canonical transformation.

18. In the real line with usual topology, consider $A = \{x \in \mathbb{R} | \text{ the integral part of } x \text{ is even} \}$. Prove that A is neither compact nor connected.

A -56

19. Let $x \in [0, 1]$, define $M_x = \{f \in C[0, 1] \text{ such that } f(x) = 0\}$. Show that every maximal ideal of C[0, 1] is M_x for some $x \in [0, 1]$.

15

A -56