Entrance Examination : M.Sc. Mathematics, 2012

Hall Ticket Number

Time : 2 hours Max. Marks. 100

Part A : 25 marks Part B : 75 marks

4-6

Instructions

1. Write your Hall Ticket Number on the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.

- 2. Answers are to be marked on the OMR answer sheet.
- 3. Please read the instructions carefully before marking your answers on the OMR answer sheet.
- 4. Hand over both the question paper booklet and OMR answer sheet at the end of the examination.
- 5. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- 6. Calculators are not allowed.
- 7. There are a total of 50 questions in Part A and Part B together.
- There is a negative marking in Part A. Each correct answer carries 1 mark and each wrong answer carries -0.33 mark Each question in Part A has only one correct option.
- 9. There is <u>no negative</u> marking in Part B. Each correct answer carries 3 marks. In Part B some questions have <u>more than</u> one correct option. All the correct options have to be marked in OMR sheet other wise zero marks will be credited.
- 10. The appropriate answer(s) should be coloured with either a blue or a black ball point or a sketch pen. DO NOT USE A PENCIL.
- 11. THE MAXIMUM MARKS FOR THIS EXAMINATION IS 100 AND THERE WILL BE NO INTERVIEW.

Part-A

- Find the correct answer and mark it on the OMR sheet. Each correct answer carries 1 (one) mark. Each wrong answer carries -0.33 mark
- 1. If α , β and γ are the roots of $x^3 + ax^2 + bx + c = 0$ then the value of $\alpha^2 + \beta^2 + \gamma^2$ is
 - [A] $a^2 2b$. [B] $b^2 2c$. [C] $c^2 + 2a$. [D] $b^2 + 2c$.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ and f(x) = |x 1| + |x 2|. Let $S_1 = \{x \mid f \text{ is continuous at } x\}$ and $S_2 = \{x \mid f \text{ is differentiable at } x\}$. Then
 - $\begin{array}{ll} [A] & S_1 = \mathbb{R}, & S_2 = \mathbb{R}. \\ [C] & S_1 = \mathbb{R} \setminus \{1, 2\}, & S_2 = \mathbb{R}. \end{array} \end{array} \begin{array}{ll} [B] & S_1 = \mathbb{R}, & S_2 = \mathbb{R} \setminus \{1, 2\}. \\ [D] & S_1 = \mathbb{R} \setminus \{1, 2\}, & S_2 = \mathbb{R}. \end{array}$

3. Consider the following statements
S₁: If f is Riemann integrable in [0, 1] then f² is Riemann integrable in [0, 1].
S₂: If f² is Riemann integrable in [0, 1] then f is Riemann integrable in [0, 1].
Then

- [A] S_1 is true but S_2 is false. [B] S_1 is false but S_2 is true.
- [C] both S_1 and S_2 are false. [D] both S_1 and S_2 are true.

4. The function $f(x) = \sin(x) + \cos(x)$ is

- [A] increasing in $[0, \pi/2]$.
- [B] decreasing in $[0, \pi/2]$.
- [C] increasing in $[0, \pi/4]$ and decreasing in $[\pi/4, \pi/2]$.
- [D] decreasing in $[0, \pi/4]$ and increasing in $[\pi/4, \pi/2]$.
- 5. Let G_1 and G_2 be two finite groups with $|G_1| = 100$ and $|G_2| = 25$. If $f: G_1 \longrightarrow G_2$ is a surjective group homomorphism, then
 - [A] |Ker(f)| = 2. [B] |Ker(f)| = 4.
 - [C] |Ker(f)| = 5. [D] |Ker(f)| = 10.

Y-6

- [A] T is nilpotent. [B] T is one-one but not onto.
 - [C] T is onto but not one-one. [D] T is an isomorphism.
- 8. Let G be a group and $a \in G$ be a unique element of order n where n > 1. Let Z(G) denote the center of the group G. Then
- [A] O(G) = n. [B] O(Z(G)) > 1. [C] Z(G) = G. [D] $G = S_2$. 9. If the series $\sum_{n=0}^{\infty} (\sin x)^n$ converges to the value $(4 + 2\sqrt{3})$ for some value of x in $(0, \pi/2)$, then the value of x is

[A]
$$\pi/3$$
. [B] $\pi/4$. [C] $\pi/5$. [D] $\pi/6$.

10. If m and M are respectively the greatest lower bound and the least upper bound of the set $S = \left\{ \frac{2x+3}{x+2}, x \ge 0 \right\}$ then

- 11. The value of $\lim_{x\to 0} (\cos x)^{(1/\sin^2 x)}$ is
 - [A] $\exp(-1)$. [B] $\exp(1)$. [C] $\exp(-1/2)$. [D] $\exp(1/2)$.

12. The graphs of the real valued functions $f(x) = 2\log(x)$ and $g(x) = \log(2x)$

- [A] do not intersect. [B] intersect at one point only.
- [C] intersect at two points. [D] intersect at more than two points.

13. The points of continuity of the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} |x^2 - 1|, & \text{if } x \text{ is irrational} \\ 0, & \text{if } x \text{ is rational} \end{cases}$ [A] x = -1, x = 0, x = 1.[B] x = -1, x = 1. [C] x = -1, x = 0.[D] x = 0, x = 1.14. The smallest positive integer n such that $5^n - 1$ is divisible by 36 is [A] 2. [B] 3. [C] 5. [D] 6. 15. Let $f(x) = x^5 + a_1 x^4 + a_2 x^3 + a_3 x^2$. Suppose f(-1) > 0 and f(1) < 0 then [A] f has at least 3 real roots. [B] f has at most 3 real roots. [C] f has at most 1 real root. [D] all roots of f are real. 16. Let $\{u, v\}$ be a linearly independent subset of a real vector space V. Then which of the following is **not** a linearly independent set? [A] $\{u, u - v\}$. [B] $\{u + \sqrt{2}v, u - \sqrt{2}v\}$. [C] $\{v, 2v - u/2\}$. [D] $\{2u + v, -4u - 2v\}$ 17. Let V be a vector space of 2×2 real matrices. Let $A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$ then the dimension of the subspace spanned by $\{A, A^2, A^3, A^4\}$ is [A] 2. [B] **3**. [C] 4. [D] 5. 18. Let $A \in M_3(\mathbb{Q})$. Consider the statements P: Matrix A is nilpotent. Q: $A^3 = 0$. Pick up true statements from the following. [A] $P \Rightarrow Q$. [B] $Q \Rightarrow P$ and $P \neq Q$. [C] $P \not\Rightarrow Q$ and $Q \Rightarrow P$. [D] None of [A], [B], [C] is true.

19. Consider the statements

 $S_1: 1 - 1 + 1 - 1 + 1 - 1 + \dots = \pm 1.$ $S_2: \frac{1}{1+2} = 1 - 2 + 2^2 - 2^3 + \dots$ Then

[A] S_1 is true but S_2 is false.[B] S_1 is false but S_2 is true.[C]both S_1 and S_2 are true.[D]both S_1 and S_2 are false.

20. Let $x_0 < x_1 < \cdots < x_n$ and $y_1, y_2, \ldots, y_n \in \mathbb{R}$. Then

- [A] there exists a unique continuous function f such that $F(x_i) = y_i$ for all i.
- [B] there exists a unique differentiable function f such that $F(x_i) = y_i$ for all i.
- [C] there exists a unique n times differentiable function f such that $F(x_i) = y_i$ for all i.
- [D] there exists a unique polynomial function f of degree n such that $F(x_i) = y_i$ for all i.
- 21. Solution of the differential equation $y'' x (y')^2 = 0$, subject to the boundary conditions y(0) = 0, y'(0) = -1 is
 - [A] $y = \sqrt{\frac{-2}{a}} \tan^{-1}\left(\frac{x}{\sqrt{2a}}\right) + b$, where *a* and *b* are arbitrary constants. [B] $y = -\sqrt{2} \tan^{-1}\left(\frac{x}{\sqrt{2}}\right)$. [C] $y = \sqrt{\frac{2}{a}} \tan^{-1}\left(\frac{x}{\sqrt{2a}}\right) + b$, where *a* and *b* are arbitrary constants. [D] $y = \frac{-1}{\sqrt{2}} \tan^{-1}\left(\sqrt{2x}\right)$.
- 22. Let V be the vector space of all continuous functions on \mathbb{R} over the field \mathbb{R} . Let $S = \{|x|, |x-1|, |x-2|\}.$
 - [A] S is linearly independent and does not span V.
 - [B] S is linearly independent and spans V.
 - [C] S is linearly dependent and does not span V.
 - [D] S is linearly dependent and spans V.

- 23. 10 red balls (all alike) and 10 blue balls (all alike) are to be arranged in a row. If every arrangement is equally likely, then the probability that the balls at two ends of the arrangement are of the same colour is
 - [A] equal to $\frac{1}{4}$. [B] equal to $\frac{1}{2}$. [C] less than $\frac{1}{2}$ [D] greater than $\frac{1}{2}$.
- 24. 3 students are to be selected to form a committee from a class of 100 students. The chances that the tallest student is one among them is
 - [A] less than 5%. [B] 6 to 10%. [C] 15%. [D] 50%.
- 25. Let \vec{f} be a smooth vector valued function of a real variable. Consider the two statements

 S_1 : div curl $\vec{f} = 0$. S_1 : grad div $\vec{f} = 0$. Then

- [A] both S_1 and S_2 are true. [B] both S_1 and S_2 are false.
- [C] S_1 is true but S_2 is false.
- [D] S_1 is false but S_2 is true.

Part-B

- The following questions may have more than one correct answer.
- Find the correct answers and mark them on the OMR sheet. Correct answers (marked in OMR sheet) to a question get 3 marks and zero otherwise.
- For the answer to be right all the correct options have to be marked on the OMR sheet. No credit will be given for partially correct answers.
- 26. A sphere passing through the points (1,0,0), (0,1,0), (0,0,2) that has the least radius is

[A]
$$18(x^2 + y^2 + z^2) - 16(x + y) - 35z = 2.$$

- [B] $9(x^2 + y^2 + z^2) 5(x + y) 16z = 4.$
- [C] $9(x^2 + y^2 + z^2) 7(x + y) 17z = 2$.
- [D] None of the above.

27. Let f be a function from $\mathbb{R} \to \mathbb{R}$. Consider the statement

P: There exists M in \mathbb{R} such that $|f(x)| \leq M$ for all x in \mathbb{R} . Which of the following statements are equivalent to P.

- [A] The range of f is a bounded set of \mathbb{R}
- [B] |f| is a bounded function.
- [C] f is taking all values between -M and M.
- [D] |f| is taking all values between 0 and M/2.

28. Let $\{x_n\}$ be a sequence of positive real numbers. Then which of the following is false?

- [A] If $\sum_{n=1}^{\infty} x_n$ is convergent then $\sum_{n=1}^{\infty} \sqrt{x_n}$ is convergent. [B] If $\sum_{n=1}^{\infty} x_n$ is convergent then $\sum_{n=1}^{\infty} x_n^2$ is convergent. [C] If $\sum_{n=1}^{\infty} x_n^2$ is convergent then $\lim_{n \to \infty} x_n = 0$. [D] If $\sum_{n=1}^{\infty} \sqrt{x_n}$ is convergent then $\lim_{n \to \infty} x_n = 0$.
- 29. Given S_1 and S_2 , where
 - S_1 : A series $\sum_{n=0}^{\infty} a_n$ converges if for a given $\epsilon > 0$ there exists $N_0 \in \mathbb{N}$ such that $|a_{n+1} a_n| < \epsilon$ for all $n \ge N_0$. S_2 : A series $\sum_{n=0}^{\infty} a_n$ converges if $|a_{n+1} - a_n| < \alpha^n$ where α is a fixed real number in (0, 1),

which of the following statements are true?

- [A] S_1 is true but S_2 is false. [B] S_1 is false but S_2 is true.
- [C] Both S_1 and S_2 are true.
- [D] Both S_1 and S_2 are false.

4-6

7

30. Let $x, y \in \mathbb{R}$. If |x + y| = |x| + |y| then

[A]
$$|x - y| = |x| - |y|$$
.
[B] $|xy| = xy$.
[C] $|x^2 + y| = |x^2| + |y|$.
[D] $|x + y| = x + y$

31. Let $f : \mathbb{R} \to \mathbb{R}$ be a quadratic polynomial. Then which of the following is **impossible**?

- [A] f(x) < f'(0), for all $x \in \mathbb{R}$. [B] f'(x) > f(x), for all $x \ge 0$. [C] f'(0) = 0 and f(1) = f(4). [D] f'(0) = 0 and $f(x) \ne 0$ for all $x \in \mathbb{R}$.
- 32. If α , β and γ are the roots of the polynomial $x^3 + x^2 + x + 1$, then the value of $\frac{1}{\alpha 1} + \frac{1}{\beta 1} + \frac{1}{\gamma 1}$ is [A] 1/2. [B] -1/2. [C] 3/2. [D] -3/2.
- 33. Let V be the vector space of polynomials of degree less than or equal to 2. Let $S = \{x^2 + x + 1, x^2 + 2x + 2, x^2 + 3\}$. Then
 - [A] S is a linearly independent set. [B] S does not span V.
 - [C] neither [A] nor [B] is false. [D] None of [A], [B], [C] is false.
- 34. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Which of these four statements mean that f is a constant function?
 - [A] For all $x, y \in \mathbb{R}$, f(x) = f(y).
 - [B] There exists $x \in \mathbb{R}$ such that for all $y \in \mathbb{R}$, f(x) = f(y).
 - [C] There exists $x \in \mathbb{R}$ and there exists $y \in \mathbb{R}$ such that f(x) = f(y).
 - [D] For each $x \in \mathbb{R}$ there exists $y \in \mathbb{R}$ such that f(x) = f(y).
- 35. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ be a 2 × 2 real matrix. Then
 - [A] 1 is the only eigenvalue of A.
 - [B] A has two linearly independent eigenvectors.
 - [C] A satisfies a polynomial equation with real coefficients of degree 2.
 - [D] A is not invertible under multiplication.

- 36. Let M and N be two smooth functions from \mathbb{R}^2 to \mathbb{R} . The form $(M \, dx + N \, dy)$ is exact if and only if
 - [A] there exists a smooth function f such that M dx + N dy = df.
 - [B] $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ for all x and y.
 - [C] $\operatorname{Curl}(M\hat{i} + N\hat{j}) = \hat{0}.$
 - [D] all the above statements are true.

37. The general solution of the differential equation $(D^2 - I)^2 y = 0$ is

[A] $(c_1 - c_2 x) \exp(x) + (c_3 - c_4 x) \exp(-x)$.

[B]
$$(c_1 + c_2 x) \exp(ix) + (c_3 + c_4 x) \exp(-ix)$$
.

- [C] $(c_1 c_2 x) \sin(x) + (c_3 c_4 x) \cos(-x)$.
- [D] $c_1 \sinh(x) + c_2 x \sinh(-x) + c_3 \cosh(x) + c_4 x \cosh(-x)$.
- 38. Let P be a polynomial of degree 5 having 5 distinct real roots. Then

[A] the roots of P and P' occur alternately.

- [B] the roots of P' and P'' occur alternately.
- [C] all the roots of P, P', P'', P''', P'''' are real.
- [D] it is possible to have a repeated root for P''.
- 39. If each term of a 3×3 matrix A is constructed by selecting a number from the set $\{-1, 0, 1\}$ with the same probability 1/3, then
 - [A] the probability that the trace of A is greater than 0 is more than 1/3.
 - [B] the probability that A is a diagonal matrix is less than 1/81.
 - [C] the probability that A is a non-singular lower triangle matrix is more than $\cdot 1/81$.
 - [D] the probability that A is symmetric is less than 1/81.

40. By revolving the curve $y = \sin(x)$ about the x-axis in the interval $[0, \pi]$, the surface area of the surface generated is

[A]
$$6\pi + 2\pi \log(1 + \sqrt{2})$$
.
[C] $2\pi \log(1 + \sqrt{2})$.
[B] $2\sqrt{2\pi} + 2\pi \log(1 + \sqrt{2})$.
[D] $2\pi(1 + \log(1 + \sqrt{2}))$.
41. Let $A_i = \begin{bmatrix} \cos^2 \theta_i & \cos \theta_i \sin \theta_i \\ \cos \theta_i \sin \theta_i & \sin^2 \theta_i \end{bmatrix}$, $i = 1, 2$. Then $A_1A_2 = 0$ if
[A] $\theta_1 = \theta_2 + (2k + 1)\pi/2$, $k = 0, 1, 2, \cdots$.
[B] $\theta_1 = \theta_2 + k\pi$, $k = 0, 1, 2, \cdots$.
[C] $\theta_1 = \theta_2 + k\pi$, $k = 0, 1, 2, \cdots$.
[D] $\theta_1 = \theta_2 + k\pi/2$, $k = 0, 1, 2, \cdots$.
42. Let $f: X \to Y$ and let A and B be subsets of X. Then

$$\begin{array}{ll} [A] & f(A \bigcup B) \subseteq f[A] \bigcup f[B]. \\ [C] & f(A \cap B) \subseteq f[A] \cap f[B]. \end{array} \end{array} \begin{array}{ll} [B] & f[A] \bigcup f[B] \subseteq f(A \bigcup B). \\ [D] & f[A] \cap f[B] \subseteq f(A \cap B). \end{array} \end{array}$$

43. The value of the integral
$$\int_{0}^{10} (x - [x]) dx$$
 is
[A] 2. [B] 3. [C] 4. [D] 5.

44. Let $f, g: (0, 1) \to \mathbb{R}$. Let $f(x) = x \sin(1/x^2)$ and $g(x) = x^2$. Then

[A] both f and g are uniformly continuous.

[B] f is uniformly continuous but g is not uniformly continuous.

[C] f is not uniformly continuous but g is uniformly continuous.

[D] both f and g are not uniformly continuous.

45. Consider a linear transformation from \mathbb{R}^4 to \mathbb{R}^4 given by a matrix $A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$

Then the number of linearly independent vectors whose direction is invariant under this transformation is

[A] 0. [B] 1. [C] 2. [D] 4.

46. Let V be the vector space of polynomials of degree less than or equal to 2. Let $D: V \to V$ be defined as Df = f'. If $B_1 = \{1, x, x^2\}, B_2 = \{1, 1 + x^2, 1 + x + x^2\}$ be two ordered bases, then the matrix of linear transformation $[D]_{B_1,B_2}$ is

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{bmatrix} . \quad \begin{bmatrix} B \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & -2 \end{bmatrix} . \quad \begin{bmatrix} C \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 2 \end{bmatrix} . \quad \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} .$$

- 47. If α and β are the roots of $(7 + 4\sqrt{3})x^2 + (2 + \sqrt{3})x 2 = 0$ then the value of $|\alpha \beta|$ is
 - [A] $2 \sqrt{3}$. [B] $2 + \sqrt{3}$. [C] $6 + 3\sqrt{3}$. [D] $6 3\sqrt{3}$.
- 48. Consider the following system of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{15}x_5 = b_1,$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{25}x_5 = b_2,$$

$$\vdots$$

$$a_{81}x_1 + a_{82}x_2 + \dots + a_{85}x_5 = b_8.$$

A vector $(\lambda_1, \lambda_2, ..., \lambda_5) \in \mathbb{R}^5$ is said to be a solution of the system if $x_i = \lambda_i$, i = 1, 2..., 5 satisfies all the equations. Then

- [A] If the system of equations has only finitely many solutions then it has exactly one solution.
- [B] If all the b_i 's are zero then the set of solutions of the system is a subspace of \mathbb{R}^5 .
- [C] A system of 8 equations in 5 unknowns is always consistent.
- [D] If the system of equations has a unique solution then the rank of the matrix $[a_{ij}]$ must be 5.

- 49. What is the negation of the statement ' 'There is a town in which all horses are white"
 - [A] In every town some horse is non-white.
 - [B] There is a town in which no horse is white.
 - [C] There is a town in which some horse is non-white.
 - [D] There is no town without a non-white horse.
- 50. Let S be the surface of the cylinder $x^2 + y^2 = 4$ bounded by the planes z = 0 and z = 1. Then the surface integral $\int \int_{S} ((x^2 x)\hat{i} 2xy\hat{j} + z\hat{k}) \cdot \hat{n} \, dS$
 - [A] -1. [B] 0. [C] 1. [D] None of [A], [B] [C].