A-54

ENTRANCE EXAMINATION – 2021

Ph. D. Chemistry – 2021

TIME: 2 HOURS

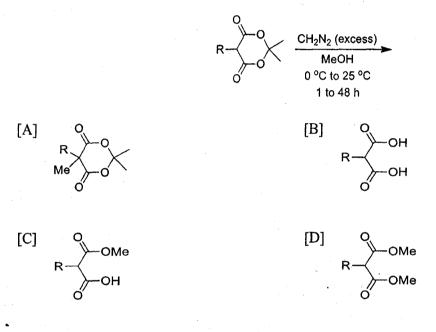
•

MAXIMUM MARKS: 70

	 · · · · · · · · · · · · · · · · · · ·
HALL TICKET NUMBER:	

INSTRUCTIONS

- 1. Write your **HALL TICKET NUMBER** in the space provided above and also on the **OMR** ANSWER SHEET given to you.
- Make sure that pages numbered from 1 25 are present (excluding 5 pages assigned for rough work).
- 3. There are eighty (80) multiple-choice questions in this paper (20 in Part-A and 60 in Part-B). You are required to answer all questions of Part-A and a maximum of 20 questions of Part-B. If more than the required number of questions are answered in Part-B, only the first 20 questions will be evaluated.
- 4. Each question in Part-A and Part-B carries 1.75 marks
- 5. There is no negative marking for both Part A and Part B.
- 6. Answers are to be marked on the OMR answer sheet following the instructions provided on it.
- 7. Handover the OMR answer sheet to the invigilator at the end of the examination.
- 8. In case of a tie, the marks obtained in the first 20 questions (**Part-A**) will be used to determine the order of merit.
- 9. No additional sheets will be provided. Rough work can be done in the space provided at the end of the booklet.
- 10. Calculators are allowed. Cell phones are not allowed.
- 11. Useful constants are provided just above Part-A in the question paper.
- 12. OMR without hall ticket number will not be evaluated and University shall not be held responsible.


A-54

Useful Constants:

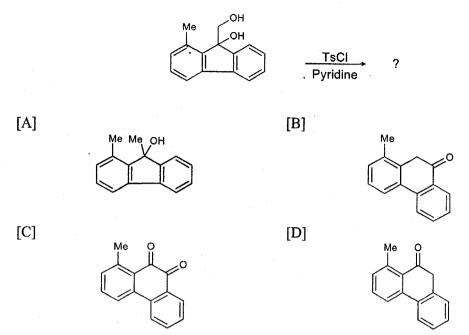
Rydberg constant = 109737 cm^{-1} ; Faraday constant = 96500 C; Planck constant = $6.625 \times 10^{-34} \text{ J}$ s; Speed of light = $2.998 \times 10^8 \text{ ms}^{-1}$; Boltzmann constant = $1.380 \times 10^{-23} \text{ J}$ K⁻¹; Gas constant = 8.314 J K⁻¹ mol⁻¹ = 0.082 L-atm K⁻¹ mol⁻¹ = 1.987 cal K⁻¹ mol⁻¹; Mass of electron = $9.109 \times 10^{-31} \text{ kg}$; Mass of proton = $1.672 \times 10^{-27} \text{ kg}$; Charge of electron = $1.6 \times 10^{-19} \text{ C}$; 1 bar = $10^5 \text{ N} \text{ m}^{-2}$; RT/F (at 298.15 K) = 0.0257 V; Avogadro number = 6.022×10^{23} ; 1 nm = 1239.84 eV

PART A

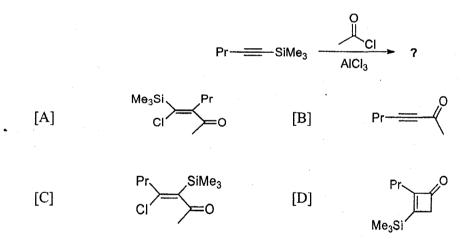
1. The product formed in the following reaction is:

2. Merrifield resin was first used for the synthesis of:

[A] Proteins


[B] Deoxyribonucleic acid [C] Ribonucleic acid [D] Carbohydrates

3. The key intermediate involved in the classical synthesis of Vitamin A is:


- [A] β -ionone
- [B] ergocalciferol
- [C] L-sorbose
- [D] 2-methyl-1,4-benzoquinone

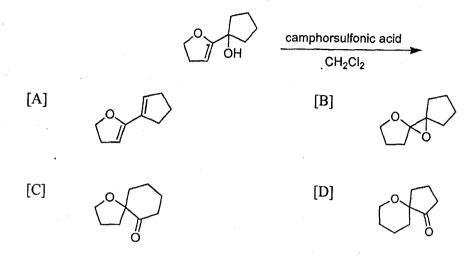
A-54

4. The major product obtained in the following transformation is:

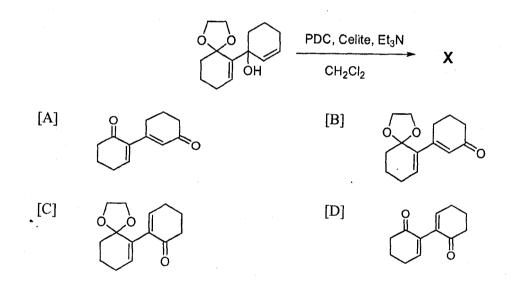
5. The product formed in the following reaction is:

6. Among the following, the pair of Bravais lattices that are identical is:

[A] face-centered and body-centered cubic


2

2


- [B] face-centered and body-centered tetragonal
- [C] body-centered and base-centered orthorhombic
- [D] primitive and base-centered monoclinic

A-54

7. The major product formed in the following reaction is:

8. The major product \mathbf{X} formed in the following reaction is:

9. With increasing temperature, Curie and Pauli paramagnetic susceptibilities:

- [A] both remain constant
- [B] decrease and increase, respectively
- [C] both decrease
- [D] decrease and remain constant, respectively

A-54

10. The value of the commutator $[x/2, p_x]$ is:

3

:

[A]	iħ/2		•		[B]	—iħ

- [C] 2*i*ħ [D] ħ
- 11. The ionic mobilities of CH₃COO⁻, Cs⁺, H⁺, and Li⁺ ions in aqueous solution follows the order:

[A] $CH_3COO^- > Cs^+ > H^+ > Li^+$

- [B] $Cs^+ > H^+ > Li^+ > CH_3COO^-$
- [C] $H^+ > Li^+ > Cs^+ > CH_3COO^-$
- $[D] H^+ > C_S^+ > L_i^+ > CH_3COO^-$
- 12. The vibrational frequency of a diatomic molecule A-B is v. If another diatomic molecule C-D has the same force constant and the masses of C and D are respectively twice that of A and B, the vibrational frequency of C-D is:

[A]	2ν		[B]	√2v
[C]	v/2	· .	[D]	$v/\sqrt{2}$

13. The frequency of transition between the nuclear spin levels of a 13 C nucleus in a magnetic field of 14.4 T is (magnetogyric ratio = 6.73×10^7 rad T⁻¹ s⁻¹):

[A]	186 MHz		[B]	176 MHz
[C]	168 MHz		[D]	154 MHz

14. The total number of degenerate eigenstates possible for the ground state of a particle-in-a-3D cubic box of length a is:

[A]	1	×.	[B]	3
[C]	2		[D]	4

Page 5 of 25

A-54

15. The differential scanning calorimetry scan of a semi-crystalline polymer is expected to display:

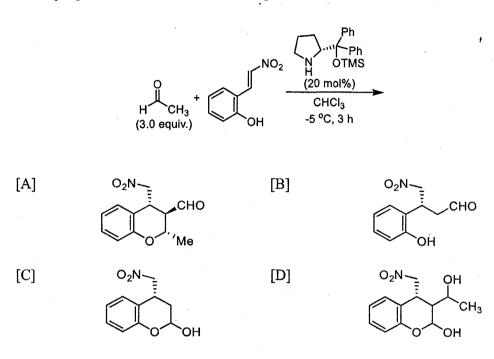
[A]	Only glass transition temperature	·[B]	Only melting temperature
[C]	Both glass transition and crystalline	[D]	Either glass transition or crystalline

16. The compound with nonzero dipole moment among PF5, NF3, BF3 and trans-PtCl₂(NH3)₂ is:

melting temperature

[A]	PF ₅	[B]	NF ₃
[C]	BF ₃	[D]	trans-PtCl2(NH3)2

17. In tetragonally compressed low-spin $[CuF_6]^{2-}$, the unpaired electron resides in the orbital:


[A]	d_{z^2}	[B]	$d_{x^2-y^2}$	[C]	d_{xz}	[D]	d_{xy}
-----	-----------	-----	---------------	-----	----------	-----	----------

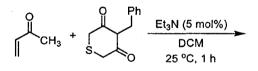
18. In the cubic zinc blende structure of ZnS,

melting temperatures.

- [A] each S^2 ion is octahedrally surrounded by six Zn^{2+} ions
- [B] each Zn^{2+} ion is octahedrally surrounded by six S²⁻ ions
- [C] each Zn^{2+} ion is tetrahedrally surrounded by four S^{2-} ions and each S^{2-} ion is octahedrally surrounded by six Zn^{2+} ions
- [D] each Zn²⁺ ion is tetrahedrally surrounded by four S²⁻ ions and each S²⁻ ion is tedrahedrally surrounded by four Zn²⁺ ions
- **19**. The diffraction method best suitable to investigate *agostic interaction* in organometallic complexes is:
 - [A] Single crystal X-ray Diffraction [B] Powder X-ray Diffraction
 - [C] Neutron Diffraction [D] Electron Diffraction
- 20. The geometries around Au and I atoms in Au₂Cl₆ and I₂Cl₆, are respectively,
 - [A] planar and planar [B] planar and nonplanar
 - [C] nonplanar and planar [D] nonplanar and nonplanar

PART B

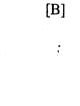
21. The major product formed in the following reaction is:


22. The suitable major product of the following reaction is:

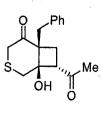
Ph

OH

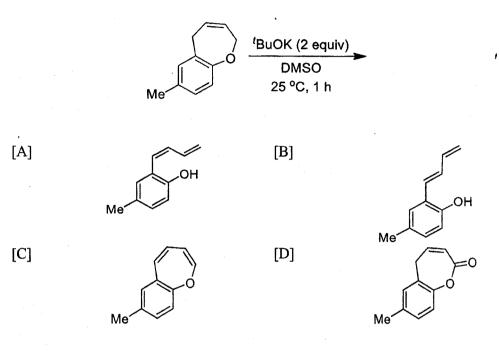
0


Ĥ Ňe

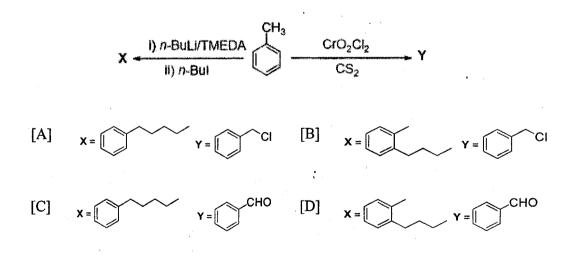
[A]


[C]

Ĵ

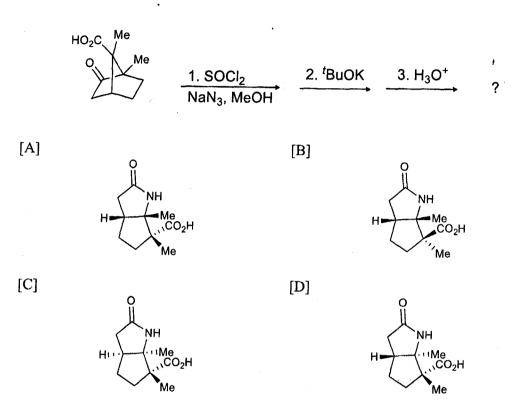

[D]

S OH



Page 7 of 25

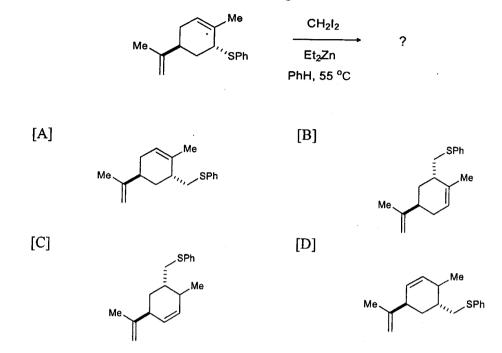
23. The suitable major product of the following reaction is:



24. The products X and Y formed in the following reactions are:

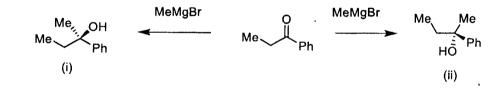
25. The product obtained in the following transformation is:

\$


26. The major product obtained in the following transformation is:

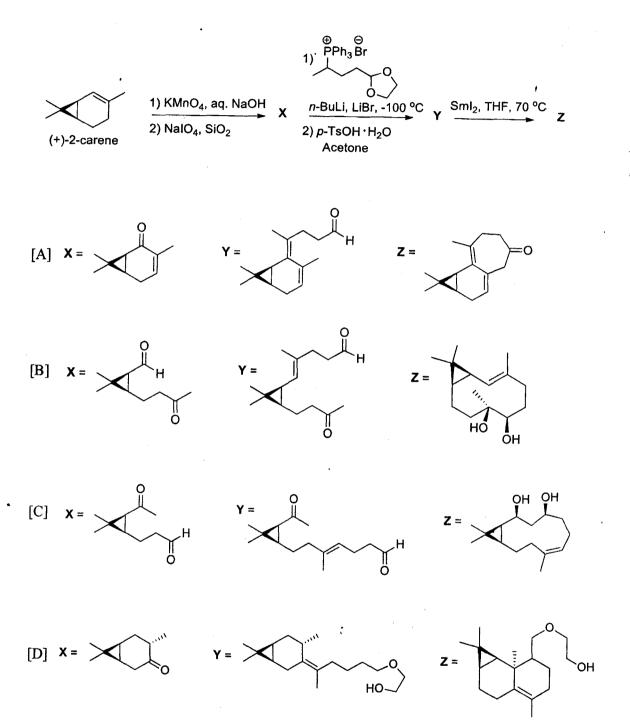
[A]

[C]


Page 9 of 25

A -54

27. The major product obtained in the following transformation is:

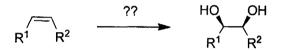

28. The modes of addition followed during the formation of products (i) and (ii) respectively, are:

- [A] *si-*, *re*-additions
- [B] re-, si-additions
- [C] si-, si- additions
- [D] *re-, re-* additions

A-54

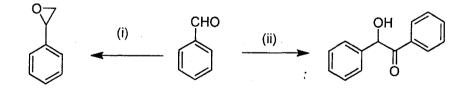
29. The products X, Y and Z obtained in the following reactions are:

Page 11 of 25

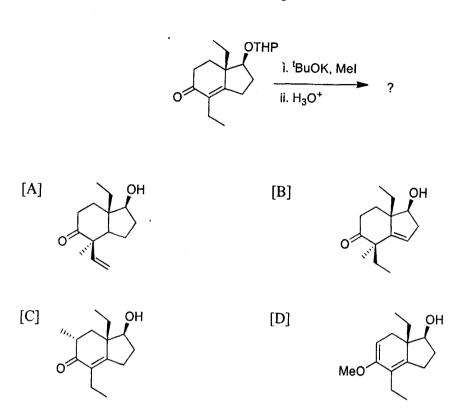

.

A-54

30. The following transformation involves:



- [A] Trans-annular ene reaction followed by oxy-Cope rearrangement
- [B] Oxy-Cope rearrangement followed by trans-annular ene reaction
- [C] Oxy-Cope rearrangement followed by retro-ene reaction
- [D] Retro-ene reaction followed by oxy-Cope rearrangement
- 31. The suitable reagents and the name of the following reaction are:

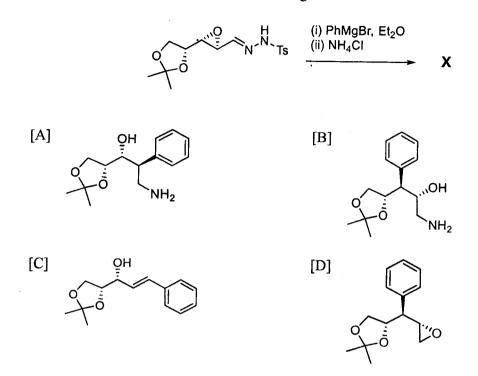


- [A] (i) OsO₄; Upjohn dihydroxylation
- [B] (i) AgOAc, I₂, H₂O (ii) KOH; Prevost dihydroxylation
- [C] (i) AgOAc, I₂, H₂O (ii) KOH; Woodward dihydroxylation
- [D] (i) PhCO₂Ag, I₂ (ii) KOH; Prevost dihydroxylation

32. Identify the suitable reagents for the following transformation:

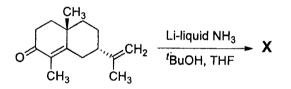
- [A] (i) KCN; (ii) $Me_3S^+I^-$, NaH
- [B] (i) NaOH; CH₂O; (ii) Thiamine hydrochloride
- [C] (i) *n*-BuLi, CH₂O; (ii) PCC
- [D] (i) Me₃S⁺I⁻, NaH; (ii) KCN

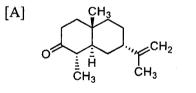
33. The major product formed in the following reaction is:

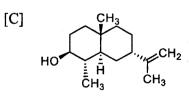

34. The rate of cyclization of given hydroxyalkyl chlorides [Cl(CH₂)_nOH], follows the order:

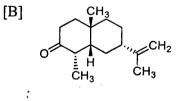
;

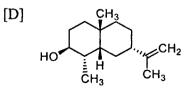
- [A] $Cl(CH_2)_3OH > Cl(CH_2)_4OH > Cl(CH_2)_5OH$
- $[B] \quad Cl(CH_2)_3OH > Cl(CH_2)_5OH > Cl(CH_2)_4OH$
- $[C] Cl(CH_2)_4OH > Cl(CH_2)_5OH > Cl(CH_2)_3OH$
- $[D] \quad Cl(CH_2)_4OH > Cl(CH_2)_3OH > Cl(CH_2)_5OH$

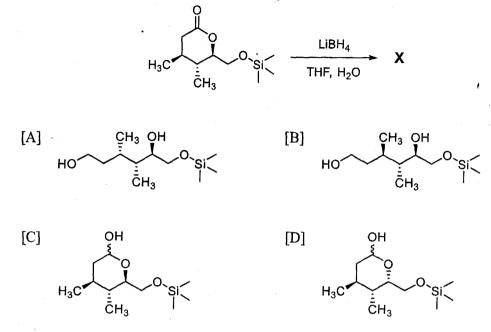

Page 13 of 25

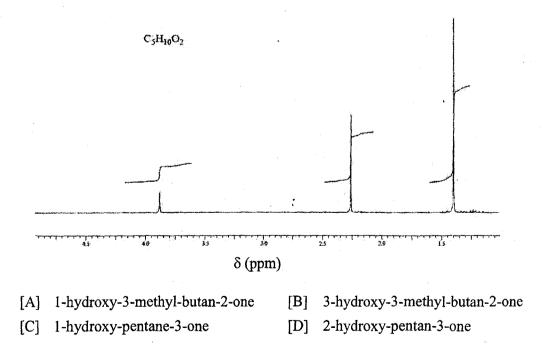

A-54



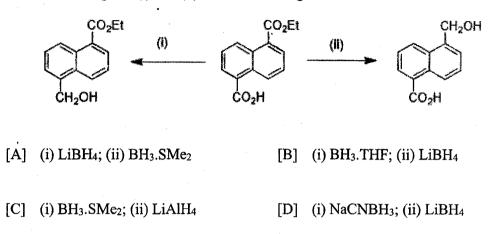

35. The major product **X** formed in the following reaction is:


36. The major product \mathbf{X} formed in the following reaction sequence is:



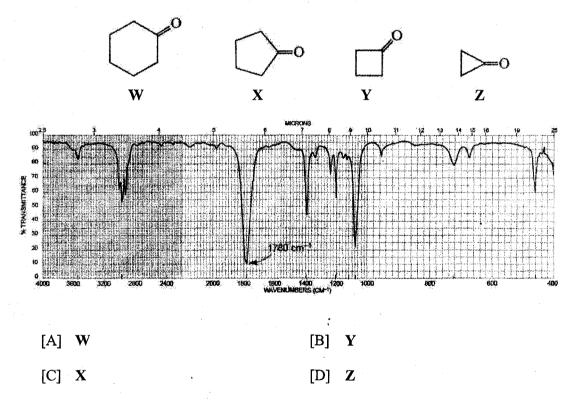

Page 14 of 25

-54



37. The major product \mathbf{X} formed in the following reaction is:

38. Compound X (C₅H₁₀O₂) gives the following ¹H-NMR spectrum. The peaks at 1.40, 2.25 and 3.90 ppm are with an intensity ratio of nearly 6:3:1. Compound X is:



Page 15 of 25

39. The suitable reagents (i) and (ii) for the following transformations are:

40. The IR spectrum shown below is exhibited by one of the following ketones.

Page **16** of **25**

- A-54
- 41. NaCl has interpenetrating fcc lattices of Na⁺ and Cl⁻ with Na⁺ in the octahedral site of Cl⁻ and *vice versa*. The distance between the closest Na⁺ and Cl⁻ is 2.82 Å. The distance between the closest Na⁺ ions (in Å) is:

[A]	5.64	•	[B]	4.88
[C]	3.99		[D]	2.82

42. The coefficient of thermal expansion is defined as, $\alpha = \frac{\Delta V}{V_o \Delta T}$, where V_o is the original volume, and ΔV and ΔT are the change in volume and temperature respectively. The X-ray diffraction peak corresponding to the (1 1 1) plane of a crystal with a primitive cubic lattice shifts from $2\theta = 30^{\circ}$ to $2\theta = 20^{\circ}$ when the temperature is increased from 100 to 300 K. The α of the crystal (in K⁻¹) is:

[A]	0.671	[B]	0.250
[C]	0.067	[D]	0.012

43. A transition that occurs in materials, by a mechanism equivalent to the Jahn-Teller distortion in molecules, is:

[A]	metal-semiconductor	[B]	paramagnet-ferromagnet
[C]	solid-liquid	[D]	paraelectric-ferroelectric

44. The spin part of the Heitler-London ground electronic wave function of H₂ is:

[A]	$2^{-1/2} [\alpha(1)\beta(2) - \alpha(2)\beta(1)]$	[B]	$2^{-1/2} [\alpha(1)\beta(2) + \alpha(2)\beta(1)]$
[C]	α(1) α(2)	[D]	$\beta(1)\beta(2)$

45. The longest wavelength absorption peak in the electronic spectrum of butadiene appears at 217 nm. According to Hückel model, the stabilization energy of butadiene owing to a delocalization of π electrons is:

[A]	1.66 eV			[B]	0.66 eV
[C]	2.21 eV			[D]	4.32 eV

Page 17 of 25

46. If the radius of the first Bohr orbit of H-atom is x, then the de Broglie wavelength of an electron in the third Bohr orbit is:

[A]	$3\pi x$	[B]	$4\pi x$
[C]	5πx	[D]	6πx

47. The half-life period of a gaseous reaction is 350 s at an initial pressure of 80 kPa at 500 K. When the pressure is reduced by a factor of two, the half-life becomes 175 s at the same temperature. The order of the reaction is:

[A]	3	[B]	2
[C]	0	[D]	1

48. The commutator $i[\hat{H}, \hat{p}]/\hbar$ defines:

[A]	Energy	[B]	Velocity
[C]	Force	[D]	Frequency

49. The rate constant of the gas phase reaction $2NO_2 + F_2 \rightarrow 2NO_2F$ is 3.8 x 10⁶ dm³ mole⁻¹ s⁻¹ at 300 K. The order of the reaction is:

[A]	0			[B]	1	
[C]	2			[D]	3	

50. For a set of two parallel first-order reactions, $A \rightarrow P$ and $A \rightarrow Q$ with rate constants, k_1 and k_2 , respectively, the concentration of P at infinite time is: (A_0 is initial concentration of A)

.

[A]	$k_1[A_0]$		[B]	$k_1[A_0]/(k_1+k_2)$
[C]	$(k_1/k_2)[A_0]$	•	[D]	$(k_1 + k_2)[A_0]$

Page 18 of 25

A - 52p

51. A defect-free crystal has a density of 2.000 g cm⁻³. If it had 0.1% Frenkel or Schottky defect sites, the density would be respectively:

[A]	1.998, 2.000		[B]	2.000, 1.900
[C]	2.000, 1.998		[D]	1.999.1.999

52. The collision theory expression for the rate constant of a bimolecular reaction is given below.

$$k = N_0 \left(\frac{8k_BT}{\pi\mu}\right)^{1/2} \pi \, d_{AB}^2 e^{-\frac{E_0}{k_BT}}$$

The activation energy (E_a) of the Arrhenius expression is related to E_0 as:

[A]	$E_a = E_0 + RT$	[B]	$E_a = E_0 + \frac{1}{2} RT$
[C]	$E_a = N_0 E_0 + \frac{1}{2} RT$	[D]	$E_a = N_0 E_0 - \frac{1}{2} RT$

53. The molar absorption coefficient of a solute at 540 nm is 286 L mol⁻¹ cm⁻¹. When the light of that wavelength passes through a 6.5 mm cell containing a solution of the solute, 46.5% of the light was absorbed. The concentration of the solution is:

[A]	4.5 mM	[B]	3.0 mM
[C]	1.5 mM	· [D]	7.5 mM

54. The vibrational frequency of oxygen molecule is 1580 cm⁻¹. The vibrational temperature (θ_v) of oxygen molecule (in K) is nearly equal to:

[A]	569	[B]	1138
[C]	2276	[D]	3414

55. The rotational constant of O_2 is 1.45 cm⁻¹. At 300 K, the value of the rotational partition function is nearly equal to:

[A]	36	[B]	72
[C]	144	[D]	288

56. In a Daniel cell, $E^0 = 1.099$ V and the ratio of concentration of CuSO₄ and ZnSO₄ is 2:1. The cell potential at 298 K is [assume that activities of the ionic species are equivalent to their molalities]:

[A]	1.08 V	[B]	1.11 V
[C]	1.12 V	[D]	1.09 V

57. Based on the great orthogonality theorem, the missing characters in the irreducible representations Γ_2 and Γ_3 are:

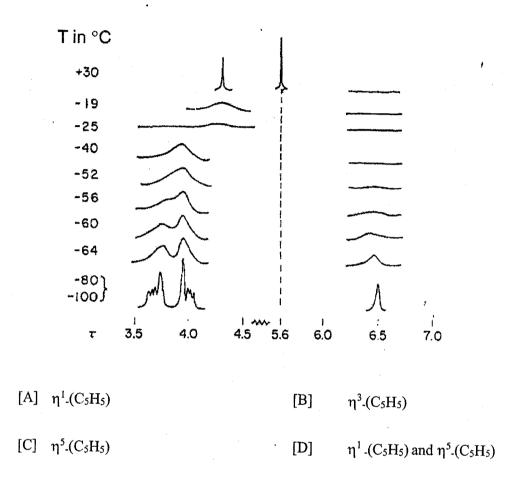
T	E	2 <i>C</i> ₃	$3\sigma_v$
Γ_1	1	1	1
Γ2			
Γ ₃			

- [A] $\Gamma_2 = 1, 1, -1$ and $\Gamma_3 = -1, 1, -1$ [B] $\Gamma_2 = 1, 1, -1$ and $\Gamma_3 = 2, -1, 0$ [C] $\Gamma_2 = 1, -1, -1$ and $\Gamma_3 = 1, 1, -1$ [D] $\Gamma_2 = 1, 2, -1$ and $\Gamma_3 = 2, 0, 0$
- 58. Calculate the potential (emf) of the cell: Cd | Cd²⁺ (0.10 M) || H⁺ (0.20 M) | Pt, H₂ (0.5 atm) at 298 K [E^o for Cd²⁺ / Cd = -0.403 V].

[A]	0.500 V	[B]	0.600 V
[C]	0.400 V	[D]	0.300 V

59. The characters per un-shifted point under \hat{C}_4 and \hat{S}_4 symmetry operations are respectively:

[A]	-1, -1			[B]	0,0
[C]	1, -1			[D]	-1,1


60. Butadiene has an absorption at 4.54×10^4 cm⁻¹ for a transition from n = 2 state to n = 3 state. Assuming particle in a box model, the approximate total length of the molecule is:

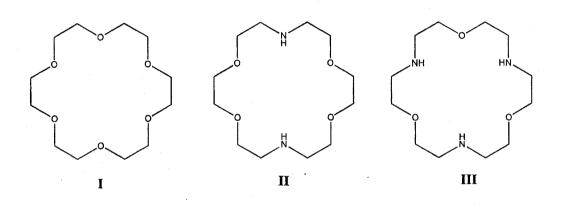
[A]	5.78 Å	[]	3]	4.78 Å
[C]	6.78 Å	Į)]	7.78 Å

Page 20 of 25

-5

61. The proton NMR spectra of $(C_5H_5)_2Fe(CO)_2$ in CS₂ at various temperatures are given below. The resonance peak at $\delta = 4.4$ ppm corresponds to:

62. The oxidation states of P in $H_4P_2O_5$, $H_4P_2O_6$ and $H_4P_2O_7$ are, respectively:


- [A] +3, +5, and +4
- [B] +5, +3, and +4
- [C] +5, +4, and +3
- [D] +3, +4, and +5

A-54

63. Match the following silicates:

Α	[Si4O ₁₁]n ⁶ⁿ⁻	P	Layered structure
В	$[SiO_3]_n^{2n-1}$	Q	Double chain
С	$[Si_2O_5]_n^{2n-}$	R	Single chain

- [A] **A=R; B=P; C=Q**
- [B] **A=Q; B=R; C=P**
- [C] **A=P; B=S; C=R**
- $[D] \qquad A=Q; B=P; C=R$
- 64. Among the macrocycles I, II and III, the one with greatest affinity for K^+ ion, and the corresponding coordination geometry around the metal ion, are respectively,

- [A] I and octahedral [B] I and planar hexagonal
- [C] II and planar hexagonal [D] III and octahedral
- 65. The σ -bond between two Re atoms in $[Re_2Cl_8]^{2-}$ will have contribution from the following orbital(s):
 - [A] d_{z^2}
 - [B] d_{xy} , d_{yz} and $p\pi$
 - [C] d_{xz} , d_{yz} and p_z
 - [D] d_{xy}

- 66. The oxidation states of iron in *hemoglobin*, *myoglobin*, *transferrin* and *ferritin* in their resting states are, respectively
 - [A] +3, +3, +2 and +2. [B] +2, +3, +2 and +3.
 - [C] +3, +2, +2 and +3. [D] +2, +2, +3 and +3.

67. A vital role CuCl₂ in the Wacker Process is:

- [A] avoiding Pd metal precipitation
- [B] reacting with hydrochloric acid
- [C] reducing Pd salt
- [D] splitting water
- 68. The coordination geometries around the metal ion in *rubredoxin*, *cytochromes* and *plastocyanin* are:
 - [A] tetrahedral, octahedral and flattened-tetrahedral, respectively
 - [B] tetrahedral, octahedral and tetrahedral, respectively
 - [C] tetrahedral, square planar and pseudo-tetrahedral, respectively
 - [D] square planar, tetrahedral and pseudo-octahedral, respectively

69. 0.2856 g of sodium oxalate (MW = 134) is dissolved in water followed by the addition of H₂SO₄. This solution is then titrated at 70 °C, requiring 45.12 mL of a KMnO₄ solution. The end point is overrun and back titration is carried out with 1.74 mL of 0.0516 (M) oxalic acid solution. The molarity of KMnO₄ solution is:

[A] 0.1922 M	[B]	0.5160 M
--------------	-----	----------

[C] 0.0197 M [D] 0.5000 M

70. The Russell-Saunders ground term for Cu^{3+} is:

[A] ${}^{2}D_{3/2}$ [B] ${}^{2}D_{5/2}$ [C] ${}^{3}F_{2}$ [D] ${}^{3}F_{4}$

71. The octahedral site stabilization energy (OSSE) for Co^{2+} is:

[A]	-1.33 Dq _o	[B]	-2.67 Dqo
L1	1.00 0 00	ι-J	2.07 2 qu

[C] -5.33 Dq_o [D] -8.44 Dq_o

Page 23 of 25

72. The number of geometrical isomers for $[Co(glycinate)_2(NH_3)Cl]^+$ is 'X' and among these geometrical isomers 'Y' are optically active. The values of 'X' and 'Y', respectively are:

[A] 6 and 4 [B] 7 and 5 [C] .6 and 5 [D] 5 and 4

73. Using HSAB concepts, the reactions predicted to have an equilibrium constant greater than 1 are:

(i) $SO_2 + (Ph)_3P(HOCMe_3) \implies (Ph)_3PSO_2 + HOCMe_3$

(ii) $R_3P \cdot BBr_3 + R_3N \cdot BF_3 \implies R_3P \cdot BF_3 + R_3N \cdot BBr_3$

(iii) $CH_3HgI + HCI \implies CH_3HgCI + HI$

(iv) $LiI + CsF \implies LiF + CsI$

[A] (i) and (ii) [B] (ii) and (iii) [C] (iii) and (iv) [D] (i) and (iv)

74. The total number of theoretically predicted electronic transitions expected on lowering the symmetry of $[Cr(en)_3]^{3+}$ to *trans*- $[Cr(en)_2F_2]^+$, {en = ethylenediamine} is:

[A] 3 [B] 5 [C] 6 [D] 4

75. As per total valence electron counting the zintl ion $[TISn_8]^{3-}$ belong to:

[A] Closo [B] Nido [C] Arachno [D] Hypo

- 76. The correct order of relative rates for water exchange reactions in $[Mn(OH_2)_6]^{2^+}$, $[Cr(OH_2)_6]^{3^+}$, and $[Fe(OH_2)_6]^{3^+}$ is:
 - $[A] [Mn(OH_2)_6]^{2+} > [Cr(OH_2)_6]^{3+} > [Fe(OH_2)_6]^{3+}$
 - [B] $[Mn(OH_2)_6]^{2+} > [Fe(OH_2)_6]^{3+} > [Cr(OH_2)_6]^{3+}$
 - [C] $[Fe(OH_2)_6]^{3+} > [Mn(OH_2)_6]^{2+} > [Cr(OH_2)_6]^{3+}$
 - [D] $[Fe(OH_2)_6]^{3+} > [Cr(OH_2)_6]^{3+} > [Mn(OH_2)_6]^{2+}$

A-54

77. For the following reaction, the first step involves the breaking of a Co-O carbonate chelate bond, which is followed by protonation of the pendant carbonate-O atom. If the reaction is carried out in $H_2^{18}O$, the product I will have:

$$[Co(NH_3)_4(CO_3)]^+ \xrightarrow{[H_3O]^+, H_2O} [Co(NH_3)_4(H_2O_2)^{3+} + CO_2$$
(I)

- [A] two $H_2^{18}O$
- [B] one $H_2^{18}O$ and one $H_2^{16}O$
- [C] two $H_2^{16}O$
- [D] $H_2^{18}O$ and $H_2^{16}O$ in the ratio 2:1

78. The expected number of fluorine environments in IF_5^{2-} and IF_5 are:

[A]	one and two, respectively	[B]	two and two, respectively

[C] two and one, respectively [D] one each

79. In inner sphere electron transfer, the sequence (order) of steps involved is:

- [A] electron transfer, bridge formation and bridge cleavage
- [B] electron transfer, bridge cleavage and bridge formation
- [C] bridge formation, electron transfer and bridge cleavage
- [D] bridge formation, bridge cleavage and electron transfer
- 80. The correct order of nucleophilic substitution reaction rates for square planar complexes of Ni(II), Pd(II) and Pt(II) is:

;

[A]	Ni(II) > Pd(II) > Pt(II)	[B]	Ni(II) > Pt(II) > Pd(II)
[C]	Pd(II) > Ni(II) > Pt(II)	[D]	Pt(II) > Pd(II) > Ni(II)

Page 25 of 25

UNIVERSITY OF HYDERBAD ENTRANCE EXAMINATION - 2021

School/Department/Centre: Course/Subject: School of Chemistry Ph.D. Chemistry

Q. No.	Answer	Q.No.	Answer	Q. No.	Answer	Q. No.	Answer
1	D	26	С	51	<u> </u>	76	' B
2	A	27	В	52	С	77	В
3	Α	28	A	53	С	78	Α
4	В	29	В	54	С	79	С
5	В	30	В	55	В	80	Α
6	В	31	С	56	В		
7	C	32	D	57	В		```
8.	В	33	В	58	C		
9	D	34	С	59	С		
10	A	35	С	60	A		•
11	D	36	С	61	С		
12	D	37	A	62	D		
13	D	38	В	63	В		
14	A ·	39	В	64	A		
. 15	С	40	В	65	A		
16	В	41	C	66	D		
17	В	42	D	67	A		
18	D ·	43	A	68	A		
19	С	44	A	69	С		
20	A	45	С	70	D		
21	A	46	D	71	В		
22	A	47	С	72	С		
23	A	48	С	73	D	,	
24	С	49	С	74	С		
25	A	50	В	75	A		

Note/Remarks : For Q. No. 56 the correct answer is B, as given above.

Signature of the Head/Dean School/Department/Centre