ENTRANCE EXAMINATION – 2019

M.Sc. Plant Biology & Biotechnology

Time: 2 hours	Maximum Marks: 100
HALL TICKET NO.	

INSTRUCTIONS

Please read carefully before answering the questions:

- 1. Enter your Hall Ticket number both on the top of this page and on the OMR answer sheet.
- 2. Answers are to be marked only on the **OMR answer sheet** following the instructions provided there upon.
- 3. Hand over the OMR answer sheet to the Invigilator before leaving the examination hall.
- 4. The question paper contains 100 questions (Part-A: Question Nos. 1-25 and Part-B: Questions Nos. 26-100) of multiple-choice printed in 21 pages, including this page. One OMR answer sheet is provided separately. Please check.
- 5. The marks obtained in Part-A will be used for resolving the tie cases.
- 6. Each question carries one mark.
- 7. There is **Negative marking** for wrong answers, in **Parts A and B**. For each wrong answer, 0.33 mark will be deducted.
- 8. Calculators and mobile phones are NOT allowed.

PART - A

1.	Which of the following systems of the levels of order	f plant classifica	tion does not use	e botanical names above
	A. Angiosperm Phylogeny GC. Takhtajan		. Cronquist . Bentham and	Hooker
2.	Stomata are completely absent in	the plants which	are	
	A. Grasses C. Conifers		s. Submerged ac c). Floating aqua	
3.	Pick the correct match of protic	or aprotic nature	of the following	solvents
	Solvent-ii CHCl ₃ Solvent-iii CH ₃ CH ₂ OCH	I ₂ CH ₃	Solvent-ii Solvent-iv	CH ₃ COOH: CH ₃ (CH2) ₄ CH ₃
	A. i-protic, ii-pro B. i-aprotic, ii-prot C. i-aprotic, ii-apro D. i-protic, ii-apro	ic iii-aprot otic iii-protic	ic iv-protic iv-aprotic	
4.	Which among the following are	sterilizing gas		
	A. Ethylene oxide; Betaprop C. Chlorine; Bromine		B. Ethylene oxid D. Halazone; Iso	le; Hexachlorophene oproponol
5	Cyanogen bromide is a pseudo l protein molecules at the C-term	nalogen compour inus of	nd with a formul	a CNBr is used to cut
	A. Arginine B. Ly	rsine	C. Glutamic aci	d D. Methionine
6	. Considering the cross Aa BB C assorting, the proportion of pro	c DD EE × aa E geny that will pho	Bb cc Dd Ee wit enotypically rese	h all the genes independently emble the first parent is
	A. 1/32 B. 1/	64	C. 3/32	D. 3/64
7	When bacteria are grown on a raccumulated in	nedium containii	ng 35S as the so	urce of sulphur, 35S gets
	A. DNA B. Pr	rotein	C. RNA	D. mRNA

- 8. For the peptide bond which is not true
 - A. There is perfectly free rotation about the peptide bond
 - B. A partial double bond
 - C. The peptide bond is shorter than a normal carbon-nitrogen single bond
 - D. Peptide bonds are made via condensation of an amine and a carboxylic acid with loss of water
- 9. In which of the following systems is the entropy the greatest
 - A. Liquid water at pH 7.0 at 37°C
 - B. Supercooled water (liquid water at a temperature less than 0^0)
 - C. Ice
 - D. Water vapour
- 10. Which is the correct order of decreasing acidity

A.
$$CH_3$$
- CH_2

B.
$$CH_3$$
- CH_2 - OH > CH_2 - CH_2 - OH > CH_2 - CH_2 - OH > CH_3 - CH_2 - OH

C.
$$CH_3$$
- CH_2 - OH > CH_2 - CH_2 - OH > CH_2 - CH_2 - OH | CH_2

D.
$$CH_3$$
- CH - OH > CH_2 - CH_2 - OH > CH_3 - CH_2 - OH > CH_2 - CH_2 - OH | Cl

- 11. Eye color of *Drosophila melanogaster* (fruit flies) is sex-linked with red-eye color being dominant to white-eye color. In a cross between a red-eyed male and a heterozygous female, all of the following progeny are expected **except**
 - A. Red-eyed fertile females
- B. Red-eyed fertile males
- C. White-eyed fertile males
- D. White eyed fertile females
- 12. Maintaining the normal glucose level is very important for normal function of cells. Insulin is very important hormone and a has vital role in maintaining the blood sugar level. The process of maintaining blood glucose levels through degradation of glycogen is known as:
 - A. Glycogenolysis

B. Gluconeogenesis

C. Glycolysis

D. Glycogenesis

to

	i.							
	ransfer of undesiing is resulting from	rable traits throug m	sh intro	gressive	hybridization	n from	parents t	o
A.	Linkage drag		В.	Gene ero	sion			
	Complementation	1		Gene py				
	_				_			
14. The pr	ogeny of a single s	self-fertilized homo	zygous	individua	ıl is known as			
A.	Inbred	B. Pureline		C. C	lone	D. 1	Hybrid	
	hysical co-localiza es is known as	ation of genetic loci	on the	same chro	omosome with	hin an ir	ndividual o	г
A.	Recombination		В.	Segregat	ion			
C.	Synteny			Dysgeny				
16. Iron ar	nd magnesium are	needed for the		•				
A.	Opening of flower	ers	B.	Translo	ation of carbo	ohydrate	es	
C.	Opening and clos	sing of stomata	D.	Synthesi	is of chloroph	yll		
17. Identif	y the mismatch be	etween the type of e	enzyme	and its ex	xample			
Α.	Oxidoreductase	 Lactate dehydroge 	enase					
В.	Hydrolase – Glu	cose-6-phosphatase						
C.	Ligase - Glutam	ate synthetase						
• D.	Transferase – Fu	marate hydratase						
18. The pr	esence of a catalys	t in a reaction mixtu	ure may	affect		•		
A.	The activation en	iergy						
B.	The standard free							
		the catalyst permane	ently					
D.	The equilibrium	constant						
19. Voges	-Proskauer test is a	procedure that dete	ects the	presence	of			
A.	Butanediol	B. Lactate	C.	Acetoin	D.	Pyruva	te	

classe	nosomes primarily s called Histones a amino acid/s?	consist of DNA and and Non-Histone chro	d proteins. These mosomal protein.	proteins Histone	are of two major proteins are rich in
	Serine & Histidin Glutamic Acid &			ne & Argi ine & As _l	nine partic Acid
21. Which	is the sunshine ho	rmone			
A.	Vitamin D	B. Estrogen	C. Auxin	D.	Gibberllin
22. The all known	lelic variants or fo as	rms of an enzyme wh	ich differ structur	ally but r	not functionally are
A.	Aliozymes	B. Isozymes	C. Holozymes	D.	Mesozymes
23. Which	among the follow	ing is the most approp	riate equation for	N ₂ fixatio	on
B., C.	$N_2 + 10H^+ + 10e^-$ $N_2 + 8H^+ + 8e^- +$	+ 12ATP → 2NH ₃ + + 14ATP → 2NH ₃ + 14ATP → 2NH ₃ + H ₂ 6ATP → 2NH ₃ + H ₂	$2H_2 + 14ADP + 1$ $2 + 14ADP + 14P_1$	4P _i	
24. A ribo enzyme	nucleic acid that or es is known as:	catalyzes a chemical re	action in a cells in	n a simila	r way to that of an
Α.	Abzyme	B. Synzyme	C. Ribozyme	D.	Protozyme
25. Which	of the following st	atements are not true	for Inulin		
P. It is a storage carbohydrate found in bulb of many plants Q. It contains fructofuranose units joined together R. It is protein highly glycosylated S. It is structural carbohydrate containing lignin					
	P and Q R and S		B. P and S D. Q and R		

PART B

		* 17		
26. The time	of first opening	g of a flower or a sp	ikelet in a spike is known as	S
A. Pro	osthesis	B. Anthesis	C. Hybridization	D. Pollination
27. Stickland	reaction is			
B. E k C. E g D. B	cid acts as an e Between an ami eto-acid acts as Between an am roup and the ke	lectron acceptor. no acid and a keto- an electron acceptor ino acid and a keto- eto-acid acts as an auto-acids, in which	o-acid, in which the amin	cid is oxidized and the
28. The prop	ortion of total v	variance contributed	by the genotype of an orga	nism is called as
C. Pa	enetic advance nmixis est family of th	e angiosperms in th	B. Selection di D. Heritability e world is	fferential
A. Rı	ubiaceae	B. Asteraceae	C. Orchidaceae	D. Rosaceae
30. Geitonog	gamy is a type o	of pollination where		
flo B. Tr flo C. Tr flo D. T	owers in the same ansfer of poller owers of genetic ransfer of poller ower ransfer of poller ower poller of poller ower of poller of pol	ne plant or genetican n grains from the an cally different plant on grains from the	ther to the stigma takes plac	ce between different place within the same
31. In protoc	cooperation, two	o organisms get mu	tually benefited and the rela	ntionship (is)
	bligatory Iay or may not l	be obligatory	B. Not obliga D. Depend on	tory the organisms

- 32. Identify the mismatch from the following
 - A. Halophile Salt
 - B. Osmophile Solute
 - C. Alkaliphile pH
 - D. Oligophile Pressure
- 33. After agarose gel electrophoresis of plasmids which forms of plasmid follow the sequence in decreasing molecular weight?
 - A. Open circular, super coiled, linear plasmid DNA
 - B. Linear plasmid, open circular, super coiled plasmid
 - C. Open circular, super coiled, linear plasmid DNA
 - D. Open circular, linear plasmid, super coiled plasmid
- 34. Corn has a diploid number of 20. How many chromosomes would be expected in a) a meiotic product b) a polar nucleus, c) a mature embryo sac d) an endosperm cell

- 35. A species of plant is discovered in which individual plants produce either white or purple flowers. True breeding plants that have short stems with white flowers are crossed with true breeding plants that have tall stems and purple flowers. The resulting offspring all have tall with purple flowers. When one of these tall, purple-flowered offspring is crossed with a short, white-flowered plant, plants with the following characteristics were obtained in equal proportions. White flowers on tall stems, purple flowers on tall stems, white flowers on short stems, purple flowers on short stems. Given the information above, which of the following is most likely **true**
 - A. The white-flower allele and the tall-stem allele occur at the same locus
 - B. The genes for flower color and stem length are closely linked
 - C. Extensive crossing-over between the purple flower allele and the white-flower allele has occurred
 - D. The genes for flower color and stem length are not linked
- 36. The general expression for the appearance of a solute in an effluent is (where V is the elution volume of a substance, V_0 void volume, k_D distribution constant and V_i internal water volume)

$$A. \quad V = V_0 + k_D V_i$$

B.
$$V = V_0/V_i$$

C.
$$V = V_0 - k_D V_i$$

D.
$$V/V_0 = k_D V_i$$

37. Whic	h of the following	statements is not of	consistent with the prin	sciple of totipotency
В. С.	Plant cells can i Cell specializat	lifferentiate into an regenerate entire pla ion is based on posi ion is based on gene	ants by mitosis tion	
38. DNA	methyltransferase	adds the methyl gr	oup to the 5 th position	of
A.	Adenine	B. Cytosine	C. Guanine	D. Thymine
39. A poly	veistronie mRNA	refers to		
В. С.	mRNAs that are	e simultaneously tra	ibosomes simultaneou	
concer	ntration can initia	ential element for o te various response ated by change in C	s in plants. Which one	levelopment; change in Ca ² e of the following response
В. С.		f growth in pollen to ell walls in young t	ubes obacco seedlings in res	sponse to wind
it can	cause the acid pr	ecipitation. The aci		ntration increased drastically wered the pH of a particula
A.	10 ⁻⁴ M	B. 4.0 M	C. 10 ⁻¹⁰ M	D. 10 ⁴ M
		gene is estimated teorresponding polyp		of 300 base pairs, how man
A.	150	B. 120	C. 300.	D.100

43. Symbiotic biological nitrogen fixation takes place with the association between a plant and a nitrogen fixing prokaryote as shown in the following table:

List of plants		Nitrogen fixing
a.	Glycine max	i. Azotobactor
b.	Datisca	ii. <i>Bradyrhizobium</i>
c.	Gunnera	iii. <i>Anabaena</i>
d.	Azolla	iv. Gluconacetobacter
		v. <i>Frankia</i>
		vi. <i>Nostoc</i>

The correct combination is:

A.	a-i	b-v	c-vi	d-iv
B.	a-ii	b-v	c-vi	d-iii
C.	a-iii	b-ii	c-i	d-iv
D.	a-ii	b-vi	c-v	d-i

44. Which of the following plant is best suitable for *in situ* phytoremediation of heavy metals in an inland pond/lake

A. Water hycianth

B. Lotus

C. Water Lily

D. Brown mustard

45. After pollination, which of the following events is vital for fertilization to occur in flowering plants?

- A. Sperms swim to the egg and the polar nuclei
- B. Petals close around the reproductive parts
- C. Meiosis occurs within the pollen grain
- D. A pollen tube grows from the stigma to the ovule

46. When a diploid embryo sac is formed from a megaspore mother cell without a regular meiotic division, then the process is called

A. Parthenogamy

B. Polyspermy

C. Polygamy

D. Diplospory

47. The phenomenon leading to the development of embryo from synergids or antipodal cells without fertilization is known as:

A. Apospory

B. Apogamy

C. Autogamy

D. Diplospory

48. Match the following research institute with correct places

8	a. Bose Inst	itute	i. Lucknow	
ł	o. Indian In	stitute of Science	ee	ii. New Delhi
(. Indian Ag	gricultural Rese	arch Institute	iii. Bangalore
C	l. National	Institute of Nut	rition	iv. Chennai
				v. Hyderabad
				vi. Kolkata
A.	a-iv	b-i	c-vi	d-iii
B.	a-vi	b-iii	c-ii	d-v
C.	a-v	b-i	c-iii	d-ii
D.	a-iv	b-ii	c-i	d-v

49. Okazaki fragments are formed on

- A. Lagging strand of DNA
- B. Leading strand of DNA
- C. Both leading and lagging strands of DNA
- D. Only on uncoiled DNA double helix

50. Find the correct match of Nobel prize and section

		Section			
 a. Jeffrey C. Hall, Michael Rosbash, Michael W. Young b. Denis Mukwege, Nadia Murad c. Frances H. Arnold, George P. Smith, Sir Gregory P. Winter d. Arthur Ashkin, Gérard Mourou, Donna Strickland 					i. 2017-Chemistryii. 2018-Chemistryiii. 2018-Medicineiv. 2017-Medicinev. 2018-Physicsvi. 2018-Peace
A. B. C. D.	a-v a-iv a-iii a-ii	b-vi b-vi b-iii	c-iii c-ii c-ii	d-iv d-v d-i d-vi	

51. Match the following

	Group A		Group B	}	
	a. Dendrobiu	m	i. Rosa	ceae	
	b. Tradescantia ii. Asclepeda			epedace	
	c. Fragaria iii. Orchidacea				
	d. Syzygium		iv. Commelinaceae		
	•		v. Solar	ace	
			vi. Myrt	aceae	
A.	a-ii	b-iv	c-i	đ-v	
B.	a-iv	b-iii	c-ii	d-i	
C.	a-iv	b-ii	c-i	d-iii	
D.	a-iii	b-iv	c-i	d-vi	

- 52. Cultivated bananas are sterile because
 - A. Male flowers are not produced
 - B. Pollinators are not available
 - C. They are triploid and therefore seeds are not set
 - D. Female flowers are not produced
- 53. Match the types of ovule (group A) with the corresponding plant (group B)

		Group A		Group B
		a. Orthotropous		i. <i>Lemna</i>
		b. Anatropous		ii. <i>Opuntia</i>
		c. Amphitropous		iii. <i>Polygonun</i>
		d. Circinotropous		iv. <i>Ricinus</i>
A.	a-ii	b-iv	c-i	d-iii
B.	a-iv	b-ii	c-iii	d-i
C.	a-iii	b-iv	c-i	d-ii
D	a-iv	b-iii	c-i	d-ii

- 54. "Die back of shoots" disease is caused by deficiency of
 - A. Chlorine

B. Manganese

C. Copper

D. Molybdenum

55. Which of the following is an anaplerotic reaction?

- A. Conversion of pyruvate to acetyl CoA
- B. Conversion of pyruvate to lactic acid
- C. Conversion of pyruvate to acetaldehyde
- D. Conversion of pyruvate to oxaloacetate

56. Match the following

		Enzymes		Co-factors
		a. Urease		i. Se ⁺²
		b. DNA polym	erase	ii. Ni ⁺²
		c. Nitrogenase		iii. Mn ⁺²
		d. Carbonic an	hydrase	iv. Mo ⁺³
				$v. Zn^{+2}$
				vi. Mg ⁺²
A.	a-iv	b-ii	c-v	d-i
В.	a-ii	b-vi	c-iv	d-v
C.	a-iii	b-iv	c-i	d-ii
D.	a-iv	b-vi	c-i	d-ii

57. One mole of CO₂ contains

- A. 6.023×10^{23} atoms of Carbon
- C. 6.023×10^{23} molecules of CO_2
- B. 6.023×10^{23} atoms of Oxygen
- D. 18.069×10^{23} molecules of CO_2

58. Find the most appropriate match

	\mathbf{G}_{1}	roup I	Group II			
	a. β-Oxid	ation	i. Nucleu	IS		
	b. 50S rib	osomes	ii. Peroxisomesiii. Smooth ER			
	c. Light re	eaction				
	d. Steroid	biosynthesis	iv. Chloroplast			
			v. Micros	somes		
			vi. Mitocl	nondria		
A.	a-vi	b-iii	c-iv	d-ii		
B.	a-i	b-vi	c-v	d-iii		
C.	a-ii	b-iv	c-vi	d-i		
D.	a-v	b-vi	c-i	d-iii		

59. In angiosperms the A	ABC model pertains to			
A. Root developm	nent	B. L	eaf development	
C. Flower develop			hoot development	
60. In <i>Drosophila</i> , which dosage compensation?		s of chromatin r	modifications is associated wi	th
A. Histone H ₄ a	cetylation	В.	Histone H ₃ methylation	
C. Histone H_1 d	-	D.	Histone H ₂ A deacetylation	
• •	sequence (5' ATCTTG g primer sets would you		AAGCTTGCGGC 3') by PCR	,
A. 5' ATCTACT	ACGG3' and 5'AAGC	CTTGCGTT3'		
B. 5'TAGAAGT	ATGC3' and 5'GCCG	CAAGCTT3'		
	CTAC3' and 5'CGGC			
D. 5'TATCTTC	TACGG3' and 5'TTCC	AACGCCGG3'		
62. Presence of vessel les	s wood with tricolpate	pollen grains in	tetracentron is an example of	
A. Heteroplasy		B.	Heterobathmy	
C. Homoplasy		D. 3	Parallelism	
63: A Natural silk is a pol	ymer derived from			
A. Amino acids		В. М	Nucleotides	
C. Nucleosides		D. A	Adipic acid	
64. The element that acts	as a cellular cation and	is involved in os	smotic regulation is	
A. Phosphorous		B. F	Potassium	
C. Sulphur		D. C	Calcium	
65. The radioactive isotop	e of hydrogen is			
A. Protium	B. Deuterium	C. Tritium	D. O-Hydrogen	

66.	Which	statement/s	is/are	true	for	glycoca	lyx
-----	-------	-------------	--------	------	-----	---------	-----

P.	Highly fibrous network of carbohydrates that covers the membrane of cells, man	ıy
	bacteria	

- Q. Calcium deposits on the surface of the cells
- R. Lipid soluble compounds present on the cell surface
- S. It is not present in plant cells
- A. Only P
- B. P and Q
- C. Only Q
- D. Only S

67. Which one among the following inhibits the cell wall synthesis?

- A. Methicillin
- B. Gentamicin
- C. Refampin
- D. Fusidic acid

68. One among the following is not a food preservative

A. Propionic acid

B. Benzoic acid

C. Sodium diacetate

D. Cinnamic acid

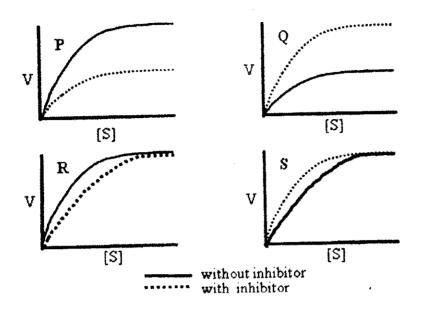
69. Match the following

Group A		Group B	
a. Loktak lake b. Ghana c. Kanha d. Nokrek		i. Elephant reserveii. Ramsar siteiii. Biosphere reserveiv. National Parkv. Tiger sanctuaryvi. Bird sanctuary	
a-ii a-iv a-vi 	b-vi b-ii b-v	c-iii G	1-iii 1-i 1-i 1-ii 1-iv
a-iii	b-i	c-v	T-1 A

70. All the plant groups possess phloem parenchyma except

A. Gymnosperms

B. Pteridophytes


C. Dicots

A.B.C.

D. Monocots

71. 3	Ferme	entation: a	word with many meanin	gs for n	nicro	obiologist and for a biochemist, it is
	A. B. C. D.	Use of an A biologic	ependent on substrate-le- organic substrate as the cal process that occurs in ess involving mass culture	electron	n doi senc	nor and acceptor
						urification methods used the purification used in above purification?
	Δ	Gel Electr	ronhoresis		B.	Ion exchange Chromatography
			Chromotography			Gel Filtration Chromatography
73.	Whic	h of the pla	unt live cell-type is devoi	d of nu	cleu	s at maturity?
	٨	Xylem pa	renchuma		R	Vessels
		Companio				Sieve tube elements
74.	Mato	h the appro	opriate pair			
•	111000		a. Asafoetida		i	Syzygium aromaticum
			b. Santonin			Vitis vinifera
			c. Resveratrol			Curcuma longa
			d. Caryophyllene			Artemisia maritime
					ν.	Terminalia chebula
					vi.	Ferula sps
•	A.	a-iii	b-vi	c-ii		d-i
	В.	a-v	b-i	c-ii		d-iii
	C.	a-i	b-iv	c-ii		d-v
	D.	a-vi	b-iv	c-ii		d-i
75.			without α-hydrogens in the reaction is called	presen	ce o	of a strong base form an alcohol and a
	A.	Grignard	reaction		B.	Cannizaro reaction
		•	ondensation		D.	Perkin condensation
76.	The	maximum	number of hydrogen bor	nds a wa	ater	molecule can have
	A.	1	B. 3	C. 2		D. 4

77. Which is Michaelis-Menten graph for competitive inhibition

- A. Graph R
- B. Graph P
- C. Graph Q
- D. Graph S

78. What is C-value?

- A. This is the number of Cytosine nucleotide present in a gene
- B. This is the number of crossing over occurred on a specific locus of the genome
- C. This is the value of codon bias in a defined gene
- D. This is the amount of DNA contained within haploid nucleus of an organism
- 79. Agarose gel electrophoresis is used for DNA/RNA detection. What is the nature of this agarose and from where it is obtained?
 - A. It is a polysaccharide in nature and obtained from waxy leaf of desert plants
 - B. It is a lipoprotein in nature and obtained from brown algae
 - C. It is a polysaccharide in nature and obtained from red algae
 - D. It is a glycoprotein in nature and obtained from green algae
- 80. Which of the following technique is NOT related to gene expression analysis?
 - A. Amplified fragment length polymorphism (AFLP)
 - B. Northern hybridization
 - C. Real time polymerase chain reaction
 - D. Microarray

81. In wh	ich of the following	techniques restriction	end	onuclease is NO	T used?
A. B. C. D.	Random Amplified Cleaved Amplified	nt length polymorphism I Polymorphic DNA (I Polymorphic Sequent Int length polymorphism	RAI	PD) (CAPS)	
	_	and what is its nature		,	
A. B. C. D.	It is the outermost It is the outermost	layer of endosperm as layer of endosperm as layer of stomata and s layer of stomata and s	nd m made	ade up of carbol e up of protein	hydrate
83. The n	nale sex organ of the	bryophytes is called			
	. Archegonium . Phycobiont			Antheridium Carpogonia	
84. What	is "Perennation"?				
C. D.	under unfavourabl It is the process of It is the process of harardous waste so It is the process of	e conditions germination of seeds of phytoremediation v	in d wher	rought condition e plant can surv	vive in heavy metal containing
. A.	TΔS°	B. - ΤΔS°	C.	-ΔΗ°	D. lnKeq
86. In wh	nich of the following	experiment, a probe i	is rec	quired?	
A. B. C. D.	Polymerase chain Pulsed-field Gel E Southern hybridiz DNA isolation	lectrophoresis (PFGE	E)		
87. Whic PAG		s oxidative/reductive	state	determines a pro	otein's migration on SDS-
Α.	Methionine	B. Tryptophan	C	. Cysteine	D. Tyrosine

88. A react S have	tants P and less energy	Q spontany than the	eously reacts a reactants P and	and form Q, then	s a prodabove 1	ucts R and S, the products R and reaction is
	Exergonic Isogonic			B. D.	Enderg Adiaba	,
89. Match	the comme	ercial micro	bial sources in	Group I	with the	products in Group II.
	b. Klei c. Asp	Group I ynebacterin bsiella oxyl ergillus nig aligenese u	toca ger		i. Meth ii. Poly iii. 2,3-l iv. Citri v. Acet	-β-hydroxybutyric acid Butane di-ol
	a-iii a-vi a-i a-vi h of the foll		c-ii c-iv c-ii c-iv	d-i d-i d-i d-	i v	material for in vitro mutant
A. • C.	Shoot mer	ristems ension cultu	ures		B. D.	Root meristems Seeds
91. All of A. B. C. D.	They are Their eff	e simple org ects would organs are		s g on the athesis o	interacti f plant gr	on with other growth regulators rowth regulators
92. Suga	r beet (<i>Beta</i> nosomes w	a vulgaris	ssp. <i>vulgaris</i>) i I in a monosom	s diploid	l with 2s at of this	n = 18 chromosomes. How many species?
A.			3. 10		. 19	D. 17

93. Match the entries in the group I with the elution conditions in group II

		Group I	Group II		
	b. Hyo c. Gel	exchange chromatrophobic column filtration chromatromatofocusing	n chromatography	i. Isocratic solventii. Specific ligandiii. Ampholytesiv. Decreasing gradient of polarityv. Increasing gradient of salt	
A. B.	a-iv a-iv	b-i b-iii	c-ii c-i	d-v d-ii	
C.	a-v	b-iv	c-i	d-iii	
D.	a-i	b-iv	c-iii	d-ii	

94. Match the following

		Group I		Group II
		a. Acid valueb. Biuret testc. Kilani Synthesisd. Benedict's test	•	i. Iodine numberii. Reducing sugariii. Free fatty acidsiv. Cerebrosidesv. Monosaccharidesvi. Protein
A. B. C.	a-iii a-vi a-ii	b-vi b-iii b-iii	c-v c-ii c-v	d-ii d- i d-iv d-i
D.	a-iv	b-iii	c-vi	u-1

- 95. A certain species of plant produces flowers with petals that are normally blue. Plant with a nuclear mutation 'w' produce white petals in homozygous condition. In a plant of genotype 'ww', one w allele reverts to wild type during the early stages of plant development. The detectable outcome that this reversion produces in the resulting petals is
 - A. Blue petals
 - C. Blue petals with white sectors
- B. White petals
- D. White petals with blue sectors

96. What are the possible peptides obtained by digestion with trypsin

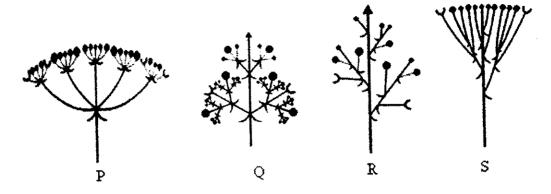
Sequence +H₃N-ASKLYPPASTKYSATTPYESLPKTYW-COO

A. ⁺H₃N-AS-COO ⁻ ⁺H₃N- KYSATTPYESLPK-COO ⁻ *H₃N- KLYPPAST-COO*
H₃N-TYW-COO

B. [†]H₃N -ASK-COO⁻ [†]H₃N-YSATTPYESLPKTYW-COO⁻ *H₃N -LYPPASTK-COO

C. ⁺H₃N -AS-COO⁻ ⁺H₃N- YSATTPYESLPK-COO⁻ †H₃N- KLYPPASTK-COO^{*} †H₃N- TYW-COO^{*}

D. [†]H₃N -ASK-COO[†] [†]H₃N -KYSATTPYESLP-COO[†] ⁺H₃N- LYPPAST-COO⁻ ⁺H₃N- KTYW-COO⁻


97. Pseudominance is

- A. The expression of recessive mutation in a heterozygous individual in the absence of wile-type allele
- B. Caused by the presence of extra gene copy resulting in expression of dominant mutation in homozygous individual with wild-type alleles
- C. The expression of dominant allele only in homozygous individuals and not in heterozygous individuals
- D. The expression of dominant mutation which always leads to lethality
- 98. The transfer of a gene from one organism to another or transfer of genetic variation from one population to another is known as
 - A. Gene flow
 - C. Gene substitution

- B. Gene conversion
- D. Genetic redundancy

- 99. Expansins are involved in
 - A. Involved in reaction methylation
 - B. Involved in transglycosylation
 - C. Involved in acetylation
 - D. Cross-linking network in cell walls

100. Which is the correct order of inflorescence

- A. P-Compound raceme, Q-Compound umbel, R-Compound corymb, S-Thyrse
- B. P-Compound corymb, Q-Compound raceme, R-Thyrse, S-compound umbel
- C. P-Compound umbel, Q-Thyrse, R-Compound raceme, S-Compound corymb
- D. P-Compound umbel, Q-Compound corymb, R-Thyse, S-Compound raceme

Revised Keys
Entrance Examination-2019
M Sc. Plant Biology and Biotechnology

Q No	Ans.	Q No	Ans.	Q No	Ans.	Q No	Ans.
1	A	26	В	51	D	76	D
2	\overline{B}	27	A	52	С	77	A
3	С	28	D	53	C	78	D
4	$ {A}$	29	В	54	С	79	С
5	D	30	A	55	D	80	A
6	A	31	В	56	В	81	В
7	В	32	D	57	С	82	A
8	A	33	<u>B</u>	58	A	83	В
9	D	34	A	59	С	84	A
10	В	35	D	60	<u>A</u>	85	В
11	D	36	В	61	В	86	С
12	A	37	D	62	В	87	С
13	A	38	В	63	A	88	A
14	В	39	C or D*	64	В	89	В
15	C.	40	*	65	С	90	С
16	D	41	A	66	*	91	С
17	D	42	D	67	A	92	D
18	A	43	В	68	D	93	С
19	С	44	A	69	A	94	A
20	В	45	D	70	D	95	A
21 •	A	46	D	71	В	96	В
22	A	47	В	72	D	97	A
23	D	48	В	73	D	98	Α
24	С	49	A	74	D	99	D
25	С	50	В	75	В	100	С

^{*} Benefit is given to all.