1

Entrance Examination: Ph.D. Mathematics/Applied Mathematics, 2018 Hall Ticket Number

Time: 2 hours Max. Marks: 80

Part A: 40 Marks Part B: 40 Marks

5-53

Instructions

- 1. Write your Hall Ticket Number in the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
- 2. Answers are to be marked on the OMR sheet.
- 3. Please read the instructions carefully before marking your answers on the OMR answer sheet.
- 4. Hand over the OMR answer sheet at the end of the examination.
- 5. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- 6. Calculators are not allowed.
- 7. There are a total of 40 questions in **PART A** and **PART B** together.
- 8. Each correct answer carries 2 marks.
- 9. The appropriate answer should be coloured with either a blue or a black ball point or a sketch pen. DO NOT USE A PENCIL.
- 10. \mathbb{R} denotes the set of real numbers, \mathbb{C} the set of complex numbers, \mathbb{Z} the set of integers, \mathbb{Q} the set of rational numbers, and \mathbb{N} the set of all natural numbers.
- 11. This book contains 9 pages including this page and excluding pages for the rough work. Please check that your paper has all the pages.

- 1. Let X be a finite set with |X| = 6. Then the number of equivalence relations on X such that each equivalence class has at least three elements in it is:
 - (A) 10.
 - (B) 11.
 - (C) 20.
 - (D) 21.
- 2. The number of ways to select four distinct integers from {11, 12, 13, 14, 15, 16, 17, 18, 19, 20} such that no two are consecutive integers is:

(A)
$$\frac{9!}{4! \times 5!}$$
.
(B) $\frac{8!}{4! \times 4!}$.
(C) $\frac{7!}{4! \times 3!}$.
(D) $\frac{6!}{4! \times 2!}$.

- 3. Let X be a nonempty finite set and $A, B \subset X$. Let $n = |(A \setminus B) \cup (B \setminus A)|$ and $k = |X \setminus (A \cap B)|$. If $n \neq 0$ and k = 5n, then $|X \setminus (A \cup B)|$ is equal to:
 - (A) 4n.
 - (B) 3n.
 - (C) 2n.
 - (D) n.

4. Suppose $\mathbb{N} = \bigcup_{n=1}^{\infty} A_n$, where A_n 's are nonempty and pairwise disjoint. Then,

- (A) A_n is a finite set for each $n \in \mathbb{N}$.
- (B) A_n is a finite set for all but finitely many $n \in \mathbb{N}$.
- (C) A_n is a finite set for infinitely many $n \in \mathbb{N}$.
- (D) None of the above.
- 5. Let (n_k) be a strictly increasing sequence of natural numbers and let $A = \{n_m n_k : k < m\}$. Then, which of the following is TRUE?
 - (A) $\mathbb{N} \setminus A$ is always finite.
 - (B) If $\mathbb{N} \setminus A$ is finite, then $n_{k+1} = n_k + 1$ for all large $k \in \mathbb{N}$.
 - (C) If $\mathbb{N} \setminus A$ is finite, then $\sup\{n_{k+1} n_k : k \in \mathbb{N}\} < \infty$.
 - (D) None of the above.

 $\mathbf{2}$

- 6. Let A, B, C, D be nonempty finite sets with |B| < |C| = |D| < |A|. Let $f_1 : A \to B$, $f_2 : B \to C, f_3 : C \to D$, and $f_4 : D \to A$ be functions. Then which of the following is FALSE?
 - (A) $f_2 \circ f_1$ is never surjective.
 - (B) $f_3 \circ f_2$ is never surjective.
 - (C) $f_4 \circ f_3$ is never injective.
 - (D) $f_1 \circ f_4$ is never injective.
- 7. If $k, m, n, p \in \mathbb{N}$ are such that 3k + 2p < 4k + m < 3n + 2p < 2n + 3p, then the largest among k, m, n, p is:
 - (A) k.
 - (B) m.
 - (C) n.
 - (D) p.
- 8. The average age of the three granddaughters of a king is equal to the age of the second granddaughter, and is also equal to one-seventh of the age of the king. Then the average age of the king and his second granddaughter is equal to:
 - (A) twice the average age of the first and third granddaughters.
 - (B) thrice the average age of the first and third granddaughters.
 - (C) four times the average age of the first and third granddaughters.
 - (D) six times the average age of the first and third granddaughters.
- 9. in a code language, DEER, LION, TIGER, and ELEPHANT are coded respectively as OIIT, ARPE, HRMIT, and IAINGKEH. Then the code word for LEOPARD is:
 - (A) AIPNKTO.
 - (B) AIPNKOT.
 - (C) AIPKNTO.
 - (D) AIPKNOT.
- 10. In a coding, the vowels A,E,I,O,U are permuted among themselves, and the remaining letters of the English alphabet are permuted among themselves. Then a possible code word for CROCODILE is:
 - (A) PYAPAMELY.
 - (B) PYAPIMELO.
 - (C) PYAYAMELO.
 - (D) PYAPAMELO.

- 11. In a coding, each letter is replaced by a word consisting of three or more letters. If the coding for the words END, NET, and TEN are respectively ENEENEEEEN, ENEEENEEENE, and EENEENEE. Then the code word for DEN is:
 - (A) EENENEENEE.
 - (B) ENEEENENEE.
 - (C) EENEENEENEE.
 - (D) EENENEEENE.
- 12. In a particular type of coding, the words HILL, RIVER, and TREE are coded respectively as AAEM, NSLEN, and SSNY. Then the code word for THRILL is:
 - (A) AAEMNY.
 - (B) AAENMY.
 - (C) AAESMY.
 - (D) AAELMY.
- 13. In a particular type of coding, SKY and CLOUDS are written respectively as TMB and DNRYIY. Then the code word for RAIN is:
 - (A) SBKQ.
 - (B) SBLQ.
 - (C) SCKR.
 - (D) SCLR.

14. Fill appropriately the seventh entry in the sequence: 1, 6, 15, 28, 45, 6.

- (A) 87.
- (B) 91.
- (C) 95.
- (D) 99.

15. Fill appropriately the eighth entry in the sequence: 1, 3, 6, 11, 18, 29, 42, ___,

- (A) 57.
- (B) 58.
- (C) 59.
- (D) 60.

S-53

- 16. Let $(Y_n)_{n=1}^{\infty}$ be a sequence of subsets of a set X. The negation of the statement "there is an infinite set $M \subset \mathbb{N}$ such that Y_m 's are pairwise disjoint for $m \in M$ " is:
 - (A) There is an infinite set $M \subset \mathbb{N}$ such that $Y_k \cap Y_m \neq \emptyset$ for every $k, m \in M$.
 - (B) For every infinite set $M \subset \mathbb{N}$, there are $k, m \in M$ such that $Y_k \cap Y_m \neq \emptyset$.
 - (C) There is a nonempty finite set $M \subset \mathbb{N}$ such that Y_m 's are pairwise disjoint for $m \in M$.
 - (D) $\bigcap_{m \in M} Y_m \neq \emptyset$ for every infinite set $M \subset \mathbb{N}$.
- 17. Let $f_n : \mathbb{R} \to \mathbb{R}$ be functions for $n \in \mathbb{N}$. The negation of the statement "at most finitely many f_n 's are infinitely often differentiable" is:
 - (A) Infinitely many f_n 's are infinitely often differentiable.
 - (B) Infinitely many f_n 's are differentiable only finitely many times.
 - (C) All but finitely many f_n 's are infinitely often differentiable.
 - (D) All but finitely many f_n 's are differentiable only finitely many times.
- 18. A fair die with numbers 1 to 6 written on its six faces is thrown twice. Which of the following events has the highest probability?
 - (A) At least one throw produces the number 3.
 - (B) Both throws produce the same number.
 - (C) Both throws produce odd numbers.
 - (D) Both throws produce numbers ≥ 4 .
- 19. An example of a surjective map f from $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ onto \mathbb{N} is:
 - (A) f(k, m, n) = k + m + n.
 - (B) $f(k, m, n) = \max\{k, m, n\} \min\{k, m, n\}.$
 - (C) $f(k, m, n) = \max\{k, n\} \min\{k + m, n\}.$
 - (D) $f(k, m, n) = \max\{k, m+n\} \min\{k, m\}.$
- 20. Let $f, g: \mathbb{R} \to \mathbb{R}$ be bounded functions, and $h: \mathbb{R} \to \mathbb{R}$ be a function which is bounded below but not bounded above, i.e., $-\infty < \inf\{h(x): x \in \mathbb{R}\} \le \sup\{h(x): x \in \mathbb{R}\} = \infty$. Then an example of a bounded function $F: \mathbb{R} \to \mathbb{R}$ is:
 - (A) $F(x) = \max\{f(x), g(x) h(x)\} \min\{g(x), f(x) h(x)\}.$
 - (B) $F(x) = \max\{f(x), g(x) + h(x)\} \min\{g(x), h(x) f(x)\}.$
 - (C) $F(x) = \max\{f(x), g(x) h(x)\} \min\{g(x), h(x) f(x)\}.$
 - (D) $F(x) = \max\{f(x), g(x) + h(x)\} \min\{g(x), h(x) + f(x)\}.$

21. Let A be a 5×5 complex matrix such that $A^2 = A$. Which of the following is TRUE?

- (A) $(I A)^2 = I 2A$.
 - (B) $Rank(A) \neq Rank(I A)$.
- (C) Either A = 0 or A = I.
- (D) A has at least two non-real eigenvalues.

22. Let A and B be two 5×5 complex matrices. Which of the following is FALSE?

- (A) Trace(AB) = Trace(BA).
- (B) Det(AB) = Det(BA).
- (C) If AB = 0, then BA = 0.
- (D) If Rank(AB) = 5, then Rank(BA) = 5.
- 23. Let $\alpha = (12)(345)$ and $\beta = (123456)$ be two permutations from the group S_6 of all permutations of the set $\{1, \ldots, 6\}$. Which of the following is FALSE?
 - (A) $\alpha\beta \neq \beta\alpha$.
 - (B) α is not conjugate to β in S_6 .
 - (C) The subgroups $\langle \alpha \rangle$ and $\langle \beta \rangle$ are not isomorphic to each other.
 - (D) $\langle \alpha \rangle \cap \langle \beta \rangle$ is the trivial group.
- 24. In the ring $\mathbb{Z}[\sqrt{-3}]$, the element $1 + \sqrt{-3}$ is:
 - (A) an irreducible element.
 - (B) a prime element.
 - (C) a unit.
 - (D) an idempotent.
- 25. Which of the following is TRUE?
 - (A) There is a finite field F with |F| = 6.
 - (B) There is a finite field F with |F| = 9.
 - (C) There is a finite field F with |F| = 12.
 - (D) There is a finite field F with |F| = 15.

- 26. For a function $f : \mathbb{R} \to \mathbb{R}$, which of the following is FALSE?
 - (A) If f is continuous and bounded, then f is uniformly continuous.
 - (B) If f is uniformly continuous, then $f \circ f$ is uniformly continuous.
 - (C) If f is continuous and $\lim_{x\to\infty} f(x) = 999 = \lim_{x\to-\infty} f(x)$, then f is uniformly continuous.
 - (D) If f is Lipschitz continuous, then f is uniformly continuous.
- 27. If $f:[a,b] \to \mathbb{R}$ is a continuous map, which of the following is TRUE?
 - (A) If $|f(b) f(a)| \le b a$, then f has a fixed point in [a, b].
 - (B) If f is increasing and $f(b) \le b$, then f has a fixed point in [a, b].
 - (C) If f is a polynomial of odd degree, then f has a fixed point in [a, b].
 - (D) If $[a,b] \subset f([a,b])$, then f has a fixed point in [a,b].
- 28. Let (x_n) be a sequence of real numbers. Then no subsequence of (x_n) is a Cauchy sequence if and only if:
 - (A) $\liminf_{n\to\infty} |x_n| > 0.$
 - (B) $\limsup_{n\to\infty} |x_n| = \infty$.
 - (C) $\lim_{n\to\infty} |x_n| = \infty$.
 - (D) $\liminf_{n \to \infty} |x_{n+1} x_n| > 0.$
- 29. Let μ be the Lebesgue measure on \mathbb{R} , and $K \subset \mathbb{R}$ be a nowhere dense compact set. Then which of the following is TRUE?
 - (A) It is possible to have $\mu(K) = \infty$.
 - (B) $\mu(K)$ can be arbitrarily large, but $\mu(K) < \infty$ always.
 - (C) $\mu(K)$ can be positive, but $\mu(K) \leq 1$ always.
 - (D) $\mu(K) = 0$ always.
- 30. Let (X, \mathcal{A}, μ) be a measure space and $f_n : X \to [0, \infty]$ be measurable functions for $n \in \mathbb{N}$. Then which of the following is TRUE?
 - (A) $\int_X (\lim_{n \to \infty} f_n) d\mu \leq \lim_{n \to \infty} \int_X f_n d\mu$.
 - (B) $\int_X (\liminf_{n \to \infty} f_n) d\mu \leq \liminf_{n \to \infty} \int_X f_n d\mu.$
 - (C) $\liminf_{n\to\infty} \int_X f_n d\mu \leq \int_X (\liminf_{n\to\infty} f_n) d\mu$.
 - (D) $\int_X (\lim_{n \to \infty} f_n) d\mu \leq \limsup_{n \to \infty} \int_X f_n d\mu.$

- 31. If X is a metric space and $A \subset X$, then which of the following is FALSE?
 - (A) If A is compact, then A is closed in X.
 - (B) If X is separable, then A is separable.
 - (C) If A is connected and dense in X, then X is connected.
 - (D) If A is closed and bounded in X, then A is compact.
- 32. Let X_r be topological spaces for $r \in \mathbb{R}$, and consider $X := \prod_{r \in \mathbb{R}} X_r$ with product topology. Which of the following is FALSE?
 - (A) If each X_r is compact, then X is compact.
 - (B) If each X_r is connected, then X is connected.
 - (C) If each X_r is a Hausdorff space, then X is a Hausdorff space.
 - (D) If each X_r is metrizable, then X is metrizable.
- 33. Let $f : \mathbb{C} \to \mathbb{C}$ be $f(z) = e^z$ and $U = \{x + iy \in \mathbb{C} : -1 < x < 1 \text{ and } y \in \mathbb{R}\}$. Then, the set f(U) is:
 - (A) an open ball in \mathbb{C} .
 - (B) an open annulus in \mathbb{C} .
 - (C) an open half-space in \mathbb{C} .
 - (D) the complement of a closed ball in \mathbb{C} .
- 34. Let $\sum_{n=0}^{\infty} a_n z^n$ be a complex power series with radius of convergence equal to 25. If we define $= 5n^2a_n$ for $n = 0, 1, 2, \ldots$, then the radius of convergence of the power series $\sum_{n=0}^{\infty} b_n z^n$ is equal to:
 - (A) 25.
 - (B) 5.
 - (C) 1.
 - (D) 0.
- 35. Consider the Banach space $(C[0,1], \|\cdot\|_{\infty})$, where $C[0,1] := \{f : [0,1] \to \mathbb{R} : f \text{ is continuous} \}$ and $\|\cdot\|_{\infty}$ is the supremum norm on C[0,1] defined as $\|f\|_{\infty} = \sup\{|f(t)|: t \in [0,1]\}$. Let $\phi: C[0,1] \to \mathbb{R}$ be $\phi(f) = f(1/4) 2f(3/4)$. Then,
 - (A) ϕ is neither linear nor continuous.
 - (B) ϕ is linear but not continuous.
 - (C) ϕ is continuous but not linear.
 - (D) ϕ is linear and continuous.

- 36. Let X, Y be Banach spaces, $T: X \to Y$ be a map, and let $G(T) = \{(x, Tx) : x \in X\}$ be the graph of T in $X \times Y$. Then Closed graph theorem s ys the following:
 - (A) If T is linear and G(T) is closed in $X \times Y$, then T is an open map.
 - (B) If G(T) is closed in $X \times Y$, then T is linear and continuous.
 - (C) If T is linear and G(T) is closed in $X \times Y$, then T is continuous.
 - (D) If T is continuous and G(T) is closed in $X \times Y$, then T is linear.

37. The initial value problem $y' = 3y^{2/3}$, y(0) = 0, has

- (A) a unique solution.
- (B) exactly two solutions.
- (C) more than two, but only finitely many, solutions.
- (D) infinitely many solutions.
- 38. The sets of all eigenvalues and eigenfunctions of the Sturm-Liouville system $y'' + \lambda y = 0$, $0 \le x \le \pi$, $y(0) = 0 = y'(\pi)$ are given by:
 - (A) $\{(2n-1)^2/4 : n \in \mathbb{N}\}$ and $\{\sin(n-1/2)x : n \in \mathbb{N}\}.$
 - (B) $\{(2n-1)^2/2 : n \in \mathbb{N}\}\$ and $\{\sin(n-1/2)x : n \in \mathbb{N}\}.$
 - (C) $\{(2n+1)^2/4 : n \in \mathbb{N}\}$ and $\{\sin(n+1/2)x : n \in \mathbb{N}\}.$
 - (D) $\{(2n+1)^2/2 : n \in \mathbb{N}\}\$ and $\{\sin(n+1/2)x : n \in \mathbb{N}\}.$

39. If u = a solution of

 $u_{tt}(x,t) = u_{xx}(x,t), x \in (0,1), t > 0,$ $u(x,0) = x^2(1-x)^2, x \in (0,1),$ u(0,t) = u(1,t) = 0 for every t > 0,then u(1/2, 3/2) is equal to:

- (A) 0.
- (B) 1/2.
- (C) -1/2.
- (D) 1.

40. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous map, and u be the solution of

 $u_t(x,t) = u_{xx}(x,t), \ x \in \mathbb{R}, \ t > 0,$

$$u(x,0) = f(x), x \in \mathbb{R}.$$

Then which of the following is FALSE?

- (A) $u \in C^{\infty}(\mathbb{R} \times (0, \infty)).$
- (B) If f is bounded, then u is bounded.
- (C) If $\int_0^\infty f(x)dx = 2$, then $\int_0^\infty u(x, t)dx = 1$ for every t > 0.
- (D) If f(x) > 0 for every $x \in \mathbb{R}$, then u(x,t) > 0 for every $(x,t) \in \mathbb{R} \times (0,\infty)$.