Department of Animal Biology ENTRANCE EXAMINATION, June 2017 Ph.D. Animal Biology

Code	Ph.D e number: P-67	. Anima	al Biology
На	Il Ticket Number:		
Max	imum Time: 2 hours		Maximum Marks: 80
INST	TRUCTIONS: PLEASE READ BE	FORE A	NSWERING
> A to	here upon. Make sure that you have Hand over OMR answer sheet at the All questions carry one mark each. A 2.33 mark will be deducted for every There are a total of 12 pages in this eparately. Check this before you stange the question paper consists of Part aken into consideration in case of a prepare the merit list.	OMR ans clearly nend of the nswer all ywrong question rt answer A and P tie i.e., w	wer sheet following the instructions provided narked the Booklet Code on your OMR sheet. e examination. I, or as many as you can. answer. paper. Answer sheet (OMR) will be provided ing. art B. The marks obtained in Part A will be hen more than one student gets equal marks,
		PART '	'A"
1. Ch A) C)	Quantitative levels of gene transcripts Quantitative binding of RNA to chromatin	B)	
	hich of the following methods can be icroRNA with messengerRNA?	used to e	establish the physical association of
A) C)	Northern hybridization RNA-seq	,	HITS-CLIP ChIP-seq
	DNA fragment obtained through Ban hich of the following enzymes can be		stion was ligated to <i>BglII</i> digested vector. release the cloned DNA fragment?
A) C)	BamH1 Sal1	B) D)	HindIII Sou3A

4. Be	rk-Sharp mapping is associated with map	ping o	of:
A)	Promoter	B)	Interaction sites between RNA and ribosome
C)	Intron-Exon regions in eukaryotic gene	D)	Open promoter complex
cel	•		ansduced to form induced pluripotent stem regulatory genes such as Oct4, Sox2, Nanog
A)	Differentiation	B)	Dedifferentiation
C)	Transdifferentiation	D)	Induction
	nich of the following is an example of for	ward	
A)			B) Gene knock down
C)	Mutagenesis screen for dominant mutat	tions	D) RNA interference
7. Du	ring flow cytometric analysis, cells are st	ained	with propidium iodide to identify:
A)	Viability of cells	B)	Stage of the cell cycle
C)	Differentiation of cells	D)	Morphology of cells
8. Wh	ich of the following microscopes has the	highe	st resolution power?
A)	Transmission electron microscope	В) Scanning electron microscope
C)	Confocal microscope	Г) Stimulated emission depletion microscope
sho	owed two bands of molecular mass of omatography on a Sephadex G-100 column	of 44	to SDS-PAGE under reducing conditions. It and 26 respectively. When subjected to hat would be the expected molecular mass? 44 kDa 140 kDa
10. Se	eparation techniques for proteins exploit	differe	nces in hydrodynamic properties EXCEPT:
A)	Diffusion coefficient	B)	Charge of the protein
C)	Viscosity of the protein	D)	Size
	dhesion of primary cells <u>DOES NOT</u> req	-	
A)	Collagen	B)	Polylysine
C)	Trypsin	D)	Fibronectin
	Thich one of the following techniques caven cell population?	n be u	sed to determine the stage of cell cycle in a
A)	•	B)	Electron microscopy
C)	Fluorescence activated cell sorting	D)	Fluorescence recovery after photo bleaching
,	-6	,	, r

13. W	13. Which of the following is <u>NOT</u> required for Polymerase Chain Reaction?					
A) C)	DNA polymerase Template DNA	B) D)	Primers Dideoxy-dNTPs (ddNTPs)			
14. A	permanent way to establish fate map of a	grou	p of cells during embryonic development is:			
A) C)	Labelling cells with vital dye Making chimeras	B) D)	Labelling cells with fluorescent dye Performing <i>in situ</i> hybridization to detect transcripts			
15. A	purified plasmid DNA when electrophore	esed o	on an agarose gel separates into:			
-	Linear and supercoiled forms Circular and supercoiled forms		B) Circular and linear forms D) Linear and nick-translated forms			
16. "(Chromosome painting", a technique used t	o ana	lyze human karyotypes relies on:			
A) C)	Specific hybridization with fluorescent probe molecules Inherent fluorescence due to A-T base pairs	B) D)	Inherent fluorescence due to G-C base pairs Fluorescence resonance energy transfer			
to	exokinase catalyzes the conversion of glu- tal enzyme concentration $[E_T]$ 20 nM; sub- action velocity of 9.6 uM S^{-1} . The Km for	strate				
A) C)	20 μM 10 μM	B) D)	15 μM 5 μM			
	Thich of the following methods can be use stween normal and cancerous cells?	d to d	letermine differentially expressed genes			
A) C)	Ribo-seq DNA-seq	B) D)	RNA-seq DNAse-seq			
19. A DNA preparation that has a 260:280 nm absorbance ratio below 1.8 is most likely contaminated with:						
A) C)	Protein Phenol	B) D)	RNA Alcohol			
	Thich of the following <u>DOES NOT</u> require evelopment?	kno	wledge of the gene you want to study during			
A) C)	Gene targetting RNAi	B) D)	Forward genetic screen mRNA overexpression using microinjection			

21. In	Polymerase Chain Reaction, MgCl ₂ acts a	as:		
A)	DNase inhibitor	B)	Stal	bilizer for annealing
C)	Co-factor	D)	Sta	bilizer for denaturation
22. Dì	NA fingerprinting was developed by:			
A)	Alec Jeffreys	B)		ncis Crick
C)	Oswald Avery	D)	Ros	salind Franklin
23. Pr	otein-DNA interactions can be detected by	y:		
A)	Native gel electrophoresis	I	B)	Agarose gel electrophoresis
C)	SDS gel electrophoresis	I	D)	Urea gel electrophoresis
24. W	hich of the macromolecules given below ll the four are mixed and incubated for 30	will b minu	oe fo ites?	und intact at the end when solutions of
A)	Protein]	B)	Nuclease
C)	Protease]	D)	Nucleic acid
25. Th	ne correct order of procedure that is gener	ally f	ollo	wed to profile DNA is:
A) C)	DNA isolation – PCR amplification – Electrophoresis – Southern blotting – Autoradiography – Analyses of DNA pattern DNA isolation – Restriction digestion – PCR amplification – southern blotting – Hybridization – Analyses of DNA pattern	B)	Res - E - A - A - S - A u	JA isolation – PCR amplification – striction digestion – Hybridization Electrophoresis – Southern blotting Analyses of DNA pattern JA isolation – Restriction digestion PCR amplification – Electrophoresis Southern blotting – Hybridization – storadiography – Analyses of DNA etern
26. E A) C)	nzyme-labelled antibodies are used in all Enzyme Linked Immunosorbent Assay Immunohistochemistry	F	3)	ques mentioned below <u>EXCEPT</u> : <i>In situ</i> hybridization Immunofluorescence
27. E	Now do you prepare a 10% solution from a erial dilutions in the range of 2, 4 and 8%	90% solut	soli	ation and then by using the same prepare in a constant volume of 5 ml each?
A)	Take 1 ml of 90% solution and then make it up to 10 ml and then take 1, 2 and 4 ml each and make it up to 5 ml individually	B)	ma an	ke 1 ml of 90% solution and then ake it up to 9 ml and then take 1, 2 d 4 ml each and make it up to 5 ml dividually
C)	Take 1 ml of 90% solution and then make it up to 10 ml and then take	D)	Ta	ske 0.45 ml of 90% solution and en make it up to 9 ml and then take

1, 2 and 4 ml each and make it up to 5

	to 5 ml individually		ml ir	ndividually	
28. Which one of the following methods <u>CAN NOT</u> be used effectively for estimation of hormone in clinical diagnosis?					
A)	RIA	B)	ELIS	SA	
C)	HPLC	D)	FPL	С	
29. A	filterability value of 0.75 corresponds to	one of	f the i	following substances:	
A) C)	Inulin Sodium	B) D)	Albu Myo	min globin	
30. Ti	ne principle underlying the use of the colo	ring c	lye "d	coomassie blue" is:	
A)	Dye's positive charge groups interacting with negative carboxyl groups of protein		B)	Hydrogen bonding between the dye and the protein	
C)	Sulfonic acid groups of the dye interacts with amine groups in protein		D)	Emission of fluorescence by the dye because of multiple interactions	
31. Ea	astern blotting is used for:				
A)	Detection of DNA	B)	De	tection of RNA	
C)	Detection of protein epitopes	D)	De	tection of carbohydrate epitopes	
32. Si	ingle stranded DNA molecules, which can	be us	sed as	probes, can be synthesized by:	
A)	Inverse PCR	B)	RT-	PCR	
C)	Asymmetric PCR	D)	Nest	ed PCR	
	he secondary antibodies that are employed estern blotting are:	l duri	ng de	tection of primary antibodies in	
A)	Anti-idiotypic	B)	Anti	-allotypic	
C)	Anti-isotypic	D)	Anti	-paratypic	
34. Ir	n a diploid organism heterozygous at 2 loc	i, hov	v mar	y types of gametes can be produced?	
A)	4	B)	6	· · · · · · · · · · · · · · · · · · ·	
C)	2	D)	8		

0.5, 1 and 2 ml each and make it up

	ce	hat is the relation between Svedberg untrifugation experiment by sedimentation Non-linear	nit an velo B)	nd molecular mass in Daltons in an Ultra- ocity method? Inverse
C	2)	Direct	D)	No relation
A	pr)	ouninduced bacterial culture had 228 universely univers		β-galactosidase per ml of culture. If 43 μg of the specific activity? 5302 3500
37.	A s	solution of a protein gave an absorbance oution is 22.9, what is the concentration o	of 0.3	34 at 280 nm. Given the A ^{1%} of the protein protein in the solution?
	.) C)	100 mg/mL 149 mg/100 mL	B) D)	14.9 mg/mL 149 mg/mL
38.	Ho	ow many moles of NaCl are present in 50	mL o	of a 0.15 M solution?
A	_	0.0075 0.75	B) D)	0.075 0.00075
39.	Uŗ	oon complete hydrolysis, which of the fol	lowii	ng will yield only one type of monomer:
	x) C)	Triacylglycerol DNA	B) D)	Glycogen Lipoprotein
40.		ow many genotypes of a diploid organism amber of genotypes = $n(n+1)/2$).	can	be present for a locus with 5 alleles? (Hint:
		$3.0 \times 10^{-5} M$ $28.5 \times 10^{-5} M$,	$2.85 \times 10^{-5} M$ $3.0 \times 10^{-3} M$
		PAI	RT "	B"
41	. W	Thich of the following statements is true f	or "h	ydrogen bond"?
	A) C)	9% covalent and 91% electrostatic 1% covalent and 99% electrostatic	B) D)	10% covalent and 90% electrostatic 5% covalent and 95% electrostatic
42	. S	olution A has pH 5.0 and solution B has p	ъН 8.	0. Hence,
	A) C)	Solution A has 30 times [H ⁺] than solution B Solution A has 1000 times [H ⁺] than solution B	B) D)	Solution B has 300 times [H ⁺] than solution A Solution B has 3 times [H ⁺] than solution A

43. W	hen Ethidium bromide is used as a fluore	scent	tag to visualize DNA:		
A) C)	It is intercalated by 2.5 bp of DNA increasing length by 27% It is intercalated by 2.1 bp of DNA increasing length by 23%	B) D)	It is intercalated by 3.5 bp of DNA increasing length by 27% It is intercalated by 3.2 bp of DNA increasing length by 29%		
te	molecule of Hb is bound by three types of erminus of α-subunit and one for carboxy ntibody are bound to Hb?	f anti termi	bodies; one for BPG binding site, one for N-nus of β-subunit. How many molecules of		
A)	3	B)	6		
C)	5	D)	10		
45. W	hich of the following correctly shows Each	die-H	ofstee plot of enzyme kinetics?		
A)	V vs V/S	B)	S/V vs S		
C)	1/V vs 1/S	D)	V vs 1/S		
46. In	terms of thermal stability, which of the fo	ollow	ing order is correct?		
A)	dsDNA>dsRNA>ssDNA>ssRNA	B)	dsRNA>DNA-RNA>dsDNA>ssDNA		
C)	dsDNA>dsRNA>DNA-RNA>ssDNA	D)			
47. O	ne of the following was absent in Stanley	Mille	r's experiment for abiotic production:		
A)	H_2S	B)	CH ₄		
C)	NH ₃	D)	H_2O		
48. La	actose uptake in <i>E. coli</i> is mediated by:				
A)	Primary active transport	B)	Secondary active transport		
C)	Diffusion	D)	Antiporter		
49. If ¹⁴ C-malonyl CoA (labelled at carbon 2) and acetyl CoA are used in a test tube experiment with fatty acid synthase, which carbon of palmitic acid, the final product, will be labelled?					
A)	All the carbons of palmitic acid	B)	Only the methyl carbon of palmitic acid		
C)	All the even numbered carbons of palmitic acid except carbon 16	D)	All the odd numbered carbons of palmitic acid		
50. Ai	n mRNA coding for secretory protein who eve a protein of 400 kDa. But when it was	en trai trans	nslated in a rabbit reticulocyte lysate system lated in the same system with the addition of		

dog pancreatic "microsomes", a protein of 360 kDa was obtained. The difference in the mass

of two products is due to:

A)	Loss of 40 kDa peptide from N-terminus	B)	Loss of 40 l	kDa peptide from C-terminus
C)	Loss of 20 kDa peptide from N- and C-terminus	D)		kDa peptide from N-terminus peptide from C-terminus
O	ou are advised to identify the source of the is from turbid river and another from till give the answer?			
A)	Culture samples of both in distilled water; that which bursts is from river	B	,	samples of both in 6M that which swells is from
C)	Culture samples of both in 6M sucrose; that which burs is from pond	D) Culture	samples of both in distilled at which bursts is from pond.
52. Ly	rsophospholipid means:			
A)	Phosphorylated with one fatty acid	B)	Phosphorol	ylated with no fatty acid
C)	Phosphorylated with phosphorylated fatty acid	D)	Phosphory! acid	ated, but lacking one fatty
	hich of the amino acids below is involved odium-potassium ATPase pump?	l in m	ovement of	sodium and potassium in
A)	Histidine	B)	Glutamatic	acid
C) 54. Cl	Aspartic acid hoose the <u>WRONG</u> statement.	D)	Lysine	
A)	The ratio of lipid to protein mass is 3 in myelin	B)		f lipid to protein mass in rial membrane is 0.33
C)	The ratio of lipid to protein mass in membranes is never equal	D)		of lipid to protein mass in e cell membranes is one
55. O	ne of the following is not an integral prote	ein:		
A)	Spectrin	B)	Selectin	
C)	Caveolin	D)	Integrin	
56. A	loss of functional mutation in γ-tubulin g	gen is	likely to:	
A)	Inhibit centrosome location		B)	Inhibit association of motor to
C)	Inhibit bundling of γ -tubulin to β -tubuli	n	D)	microtubules Promote disassociation of microtube from plus-end

57. G	rowth hormone release is greater:				
A) C)	Shortly after waking up Shortly before going to sleep	B) D)	Shortly before waking up Shortly after going to sleep		
C)	Shortly before going to sleep	D)	Shortly after going to sleep		
58. W	hich of the following tissues cannot utiliz	e fats	as source of energy?		
A)	Neural	B)	Liver		
C)	Adipose	D)	Muscle		
59. In	the sensory neurons, small stimuli are an	plific	ed by:		
A)	Channel proteins	B)	Epinephrine		
C)	Biogenic amines	D)	G-protein complexes		
60. Th	ne most important function of loop of Her	ıle is:			
A)	Secretion of substances into the urine	B)	Creation of osmotic gradient in the medulla		
C)	Creation of glomerular filtrate	D)	Reabsorption of substances from urine		
	ne movement of new genes into a population	ion as	a result of migration or hybridization is		
A)	Selection	B)	Adaption		
C)	Gene flow	D)	Genetic drift		
	evelopmental changes that occur when disknown as:	fferen	t parts of an organism grow at different rates		
A)	Heterochrony	B)	Heterometry		
C)	Heterotropy	D)	Allometry		
63 M	etamorphosis in amphibians is triggered b	w en	vironmental cues that act on the:		
A)	Hypothalamus	B)	Pituitary		
C)	Eye	D)	Thyroid		
64. Human placenta is of the type:					
A)	Endotheliochorial	B)	Haemochorial		
C)	Epitheliochorial	D)	Syndesmochorial		
	65. Which of the following can be a molecular marker for head identity in the apical tip of Hydra?				
A)	BMPs	B)	NODAL		
C)	IGF	D)	WNT		

	hich feature of amphibian embryos was fi Iangold?	rst id	entified by the experiments of Speman and
A)	The blastopore	B)	The organiser
C)	The blastocoel	D)	The neural tube
67. He	ot spots are regions of high:		
A)	Rarity	B)	Diversity
C)	Endemism	D)	Critically endangered population
68. W	hich of the following regions has maximu	ım bio	odiversity?
A)	Mangrooves	B)-	Temperate rainforest
C)	Tropical rain forest	D)	Coral reefs
69. M	edulla oblongata during neural developme	ent is	derived from:
A)	Metacephalon	B)	Mylencephalon
C)	Mesencephalon	D)	Diencephalon
	ne size of <i>E. coli</i> genome is 4.6 Mb. How ith <i>EcoRI</i> ?	many	fragments will be generated if it is digested
A)	123	B)	6223
C)	1123	D)	1023
	hich of the following sigma factor directs 2(GG) consensus promotor element?	core	RNA polymerase towards the -12(GC)-
A)	Sigma 32	B)	Sigma 70
C)	Sigma 5	D)	Sigma 54
	ne headquarters of IUCN (International Unesources) is located at	nion 1	for Conservation of Nature and Natural
A)	Paris, France		B) Vienna, Austria
C)	New York, USA		D) Morges, Switzerland
	osttranscriptional regulation is a well-knowattranscriptional regulation is a well-knowattranscription regulation	own p	phenomenon in bacteria. Where do you find
A)	In attenuator region of mRNA	B)	In 3' UTR of mRNA
C)	In riboswitch region of mRNA	D)	In the loop region of tRNA

74. Which of the following bacteriophages has single strand DNA as genetic material?					
A) C)	Bacteriophage lambda Bacteriophage phiX174	B) D)	Bacteriophage T4 Bacteriophage T7		
75. Tr	anscription coupled translation is observe	d in:			
A)	Prokaryotes	B)	Eukaryotes		
C)	Viruses	D)	Yeast		
76. Th	ne amino acid made only in bacteria and b	lue g	reen algae is:		
A)	Asparagine	B)	Aspartic acid		
C)	Methionine	D)	Glycine		
77. Many marine birds often drink sea water, yet maintain their internal osmolarity at a constar level that is hypoosmotic to seawater. Which of the following physiological strategies best explains how the birds could maintain their tissue osmolarity?					
A)	Absorption of water from the environment through specialized salt-exchange glands and produce more dilute urine.	B)	Absorption of salts from the environment through salt exchange glands and produce more concentrated urine		
ŕ	Excrete salts through specialized salt exchange glands and excrete less urine	D)	Excrete both salts and nitrogenous wastes through specialized nasal glands		
	Robertsonian translocation, fusion occurs				
A)	Centromeres	B)	Nucleosomes		
C)	Telomeres	D)	Ends of long arms		
79. In	hibition of transcription through methylat	ion is	due to:		
A)	Failure of TFs binding alone	B)	Binding of proteins that facilitate methylation of histones		
C)	Binding of proteins that promote deacetylation of histones	D)	Failure of TFs binding and also recruitment of proteins that facilitate methylation and deacetylation of histones		
80. H	igh CpG content promoters are predomina	intly i	found in:		
A)	House keeping genes	B)	Developmentally regulated genes		
C)	Precociously expressed genes	D)	Multipotent genes		